sklearn中逻辑回归(logistic regression)的损失函数推导

本文探讨了sklearn中逻辑回归的损失函数,指出其与常见定义的区别。由于sklearn将标签定义为1和-1,导致损失函数形式不同。通过对logistic function的推导,解释了sklearn中损失函数的形成,并分析了源代码以确认计算的准确性。
摘要由CSDN通过智能技术生成

最近无意阅读sklearn中关于logistic regression的文档时,发现其损失函数和意识中长的不一样,有必要简单梳理下。

绝大部分的文章或者资料都习惯于将label y的空间定义为0和1,因此我们使用极大似然估计(maximum likelihood estimate)可以很轻松写出其似然函数:

\leqno(1)\qquad L(\theta )= \sum ylog(h(\theta ))+(1-y)log(1-h(\theta )) 

加上L2正则项后,整理可得我们需要最小化的损失函数如下:

\leqno(2)\qquad Loss(\theta)= \sum_{i=0}^{m}-y_i\theta x_i-ln(1-h_\theta(x_i)) + C\theta^T\theta

sklearn中假设y正负label定义为1和-1,因此其损失函数也和上面形式不太一样,sklearn关于logisti

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值