最近无意阅读sklearn中关于logistic regression的文档时,发现其损失函数和意识中长的不一样,有必要简单梳理下。
绝大部分的文章或者资料都习惯于将label y的空间定义为0和1,因此我们使用极大似然估计(maximum likelihood estimate)可以很轻松写出其似然函数:
加上L2正则项后,整理可得我们需要最小化的损失函数如下:
sklearn中假设y正负label定义为1和-1,因此其损失函数也和上面形式不太一样,sklearn关于logisti
最近无意阅读sklearn中关于logistic regression的文档时,发现其损失函数和意识中长的不一样,有必要简单梳理下。
绝大部分的文章或者资料都习惯于将label y的空间定义为0和1,因此我们使用极大似然估计(maximum likelihood estimate)可以很轻松写出其似然函数:
加上L2正则项后,整理可得我们需要最小化的损失函数如下:
sklearn中假设y正负label定义为1和-1,因此其损失函数也和上面形式不太一样,sklearn关于logisti