复旦大学计算机2020年机试题题解

AC了前三道题,D题采用了建树的方法,所以有一半用例超时;E题没什么思路而且没什么时间了就没来得及做了。

A ⽃⽜

给定五个 0~9 范围内的整数 a1, a2, a3, a4, a5。如果能从五个整数中选出三个并且这三个整数的和为 10 的倍数(包括 0),那么这五个整数的权值即为剩下两个没被选出来的整数的和对 10 取余的结果,显然如果有多个三元组满⾜和是 10 的倍数,剩下两个数之和对 10 取余的结果都是相同的;如果 选不出这样三个整数,则这五个整数的权值为 -1。

现在给定 T 组数据,每组数据包含五个 0~9 范围内的整数,分别求这 T 组数据中五个整数的权值。

【输⼊格式】

第⼀⾏⼀个整数 T (1<=T<=1000),表⽰数据组数。

接下来 T ⾏,每⾏ 5 个 0~9 的整数,表⽰⼀组数据。

【输出格式】

输出 T ⾏,每⾏⼀个整数,表⽰每组数据中五个整数的权值。

【样例输⼊】

4

1 0 0 1 0

1 0 0 8 6

3 4 5 6 7

4 5 6 7 8

【样例输出】

2

【时空限制】

2500ms,256MB

//解题思路:由于数组大小只有5,尝试暴力解法
#include <iostream>
using namespace std;

int main() {
	int T, a[5];
	cin >> T;
	//T组数据
	while (T--) {
		int sum = 0, flag = 0, ans;
		for (int i = 0; i < 5; i++) {
			cin >> a[i];
			sum += a[i];
		}
		//从5个数中选出3个进行判断
		for (int i = 0; i < 5; i++) {
			for (int j = i + 1; j < 5; j++) {
				for (int k = j + 1; k < 5; k++) {
					int sumOfThree = a[i] + a[j] + a[k];
					if (sumOfThree % 10 == 0) {
						flag = 1;
						ans = (sum - sumOfThree) % 10;
						break;
					}
				}
			}
		}
		if (flag == 0) cout << -1 << endl;
		else cout << ans << endl;
	}
	return 0;
}

B 打地鼠

给定 n 个整数 a1, a2, …, an 和⼀个 d,你需要选出若⼲个整数,使得将这些整数从⼩到⼤排好序之 后,任意两个相邻的数之差都不⼩于给定的 d,问最多能选多少个数出来。

【输⼊格式】

第⼀⾏两个整数 n,d (1<=n<=10^5, 0<=d<=10^9),分别表⽰整数个数和相邻整数差的下界。

第⼆⾏ n 个整数 a1, a2, …, an (1<=ai<=10^9, 1<=i<=n),表⽰给定的 n 个整数。

【输出格式】

仅⼀⾏⼀个整数,表⽰答案。

【样例输⼊】

6 2

1 4 2 8 5 7

【样例输出】

3

【时空限制】

2500ms,256MB

//解题思路:动态规划 + 贪心算法
#include <iostream>
using namespace std;
const int MAXN = 100010;
int a[MAXN], dp[MAXN];

int main(){
	int n, d;
	cin >> n >> d;
	for (int i = 0; i < n; i++) {
		cin >> a[i];
	}
	sort(a, a + n);
	dp[0] = 1;
	for (int i = 1; i < n; i++) {
		if (a[i] - a[i - 1] >= d) {
			dp[i] = dp[i - 1] + 1;
		} else {
			dp[i] = dp[i - 1];
			a[i] = a[i - 1];
		}
	}
	cout << dp[n - 1];
	return 0;
}

C 排队打饭

下课了,有 n 位同学陆续赶到⻝堂进⾏排队打饭,其中第 i 位同学的到达时间为 ai,打饭耗时为 ti, 等待时间上限为 bi,即如果其在第 ai+bi 秒的时刻仍然没有轮到他开始打饭,那么他将离开打饭队列 另寻吃饭的地⽅。问每位同学的开始打饭时间,或者指出其提前离开了队伍(如果这样则输出 -1)。 【输⼊格式】

第⼀⾏⼀个整数 n (1<=n<=10^5),表⽰来打饭的同学数量。

接下来 n ⾏,每⾏三个整数 ai,ti,bi (1<=ai,ti,bi<=10^9, 1<=i<=n),分别表⽰每位同学的到达时间、打 饭耗时、等待时间上限。

保证 a1<a2<…<an

【输出格式】

⼀⾏ n 个整数,表⽰每位同学的开始打饭时间或者 -1(如果该同学提前离开了队伍)。

【样例输⼊】

4

1 3 3

2 2 2

3 9 1

4 3 2

【样例输出】

1 4 -1 6

【时空限制】

5000ms,256MB

//解题思路:利用队列实现
#include <iostream>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;

struct node{
	long long a;
	long long t;
	long long b;
};

int main() {
	int n;
	cin >> n;
	queue<node> q;
	vector<int> v;
	while (n--) {	//把所有学生按照先后次序入队
		node stu;
		cin >> stu.a >> stu.t >> stu.b;
		q.push(stu);
	}
	int current = 1;
	while (!q.empty()) {
		node temp = q.front();
		q.pop();
		int ans;
		if (temp.a + temp.b >= current) {	//如果未超过等待时间
			if (current > temp.a){
				ans = current;
				current += temp.t;
			} else {
				ans = temp.a;
				current = temp.a + temp.t;
			}
		} else {	//如果超过等待时间
			ans = -1;
		}
		v.push_back(ans);
	}
	for (int i = 0; i < v.size(); i++) {
		if (i == 0) cout << v[i];
		else cout << " " << v[i];
	}
	return 0;
}

D 二叉搜索树

给定⼀个 1~n 的排列 P,即⻓度为 n,且 1~n 中所有数字都恰好出现⼀次的序列。现在按顺序将排列 中的元素⼀⼀插⼊到初始为空的⼆叉搜索树中(左⼩右⼤),问最后每个节点的⽗亲节点的元素是什 么。特别地,根节点的⽗亲节点元素视为 0。

【输⼊格式】

第⼀⾏⼀个整数 n (1<=n<=10^5),表⽰排列 P 中的元素个数。

第⼆⾏ n 个整数 p1, p2, …, pn (1<=pi<=n, 1<=i<=n),表⽰给定的排列。

【输出格式】

⼀⾏ n 个整数,其中第 i 个整数 ai 表⽰元素 i 对应节点的⽗亲节点的元素。特别地,根节点的⽗亲节 点元素视为 0。

【样例输⼊】

5

2 3 5 1 4

【样例输出】

2 0 2 5 3

【时空限制】

5000ms,256MB

我的做法是建树,但是部分用例超时了!

//思路:在树的结点定义时,定义一个变量,用来表示父亲结点的元素。二叉搜索树建树建树之后再中序遍历依次输出该变量即可。
#include <iostream>
using namespace std;
int n, flag = 0;	//flag用来处理答案最后一个字符不输出空格

//树的结构体定义
struct node{
	int data;
	int father;
	node* lchild;
	node* rchild;
};

//新建结点
node* newNode(int x, int f){
	node* Node = new node;
	Node->data = x;
	Node->father = f;
	Node->lchild = NULL;
	Node->rchild = NULL;
	return Node;
}

//插入结点
void insert(node* &root, int x, int f){
	if (root == NULL){
		root = newNode(x, f);
		return;
	}
	f = root->data;
	if (x < root->data){
		insert(root->lchild, x, f);
	} else {
		insert(root->rchild, x, f);
	}
}

//建立二叉搜索树
node* create(int data[], int n) {
	node* root = NULL;
	for (int i = 0; i < n; i++) {
		insert(root, data[i], 0);
	}
	return root;
}

//中序遍历
void inorder(node* root) {
	if (root == NULL) return;
	inorder(root->lchild);
	if(flag != n - 1) {
		cout << root->father << " ";
		flag++;
	} else {
		cout << root->father;
	}
	inorder(root->rchild);
}

int main() {
	cin >> n;
	int a[n];
	for (int i = 0; i < n; i++){
		cin >> a[i];
	}
	node *root = create(a, n);
	inorder(root);
	return 0;
}

不超时的做法如下:

//用一个表示父亲结点的数组+一个表示层数的map数组即可表示一颗搜索二叉树的插入过程
#include <iostream>
#include <map>
using namespace std;
int f[100010];	//f[i]用来保存元素i的父亲结点

int main() {
	ios::sync_with_stdio(0);	//加快cin的输入速度
	int n, mx = 0;		//n是结点个数,mx用于保存当前最大的结点
	cin >> n;
	map<int, int> m;	//m保存的是元素i所在的层数
	m[0] = 0;
	map<int, int>::iterator it, it1;
	f[0] = -1;
	for (int i = 0, t; i < n; i++) {
		cin >> t;
		if (t > mx) {
			f[t] = mx;
			m[t] = m.rbegin()->second+1;
			mx = t;
		} else {
			it = m.upper_bound(t);
			it1 = it--;
			if (it->second > it1->second) {
				f[t] = it->first;
				m[t] = it->second + 1;
			} else {
				f[t] = it1->first;
				m[t] = it1->second + 1;
			}
		}
	}
	for (int i = 1; i <= n; i++) {
		if (i == 1) cout << f[i];
		else cout << " " << f[i];
	}
	return 0;
}

E 序列

给定⼀个⻓为 n 的序列 A,其中序列中的元素都是 0~9 之间的整数,对于⼀个⻓度同样为 n 整数序列 B,定义其权值为 |A_i-B_i| (1<=i<=n) 之和加上 (B_j-B_j+1)^2 (1<=j<n) 之和。求所有⻓为 n 的整数序 列中,权值最⼩的序列的权值是多少。

【输⼊格式】

第⼀⾏⼀个整数 n (1<=n<=10^5),表⽰序列 A 的⻓度。

第⼆⾏ n 个整数 a1, a2, …, an (0<=ai<=9, 1<=i<=n),表⽰序列 A 中的元素。

【输出格式】

仅⼀⾏⼀个整数,表⽰答案。

【样例输⼊】

6

1 4 2 8 5 7

【样例输出】

11

【解释】

A 数组是 [1 4 2 8 5 7]

B 数组可以是 [3 4 4 5 5 6]。

权值为 |A_i - B_i| (1<=i<=n) 之和加上 (B_j - B_j+1)^2 (1<= j <n) 之和。

权值第⼀部分|A_i - B_i| (1<=i<=n)之和为:

|1 - 3| + |4 - 4| + |2 - 4| + |8 - 5| + |5 - 5| + |7 - 6| = 2 + 0 + 2 + 3 + 0 + 1 = 8

权值第⼆部分(B_j - B_j+1)^2 (1<= j <n) 之和为:

(3 - 4)^2 + (4 - 4)^2 + (4 - 5)^2 + (5 - 5)^2 + (5 - 6)^2 = 1 + 0 + 1 + 0 + 1 = 3

所以总权值为 8 + 3 = 11。

【时空限制】

2500ms,256MB

以下题解转载于:https://blog.csdn.net/hyacinthhome/article/details/105952974

分析:序列A给定,思考下,对于b数组每个值的选取对答案的贡献是什么??其实只有前

一个把,因为贡献只不过是加上它和它前一个值的差值的平方,和它和A数组对应位置的

差值绝对值,所以咱们就维护一个now数组,now[i]表示的是当前结束的B的这个

位置值为i,那么更新就需要前一个位置的0-9种情况取最优,那么复杂度就是

O(10*10*n),n=1e5,那么差不多1秒内了

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int tp1[10][10], tp2[10][10];
int now[10], now_temp[10];  //目前结尾为i的最小函数值,复杂度O(n*10*10)约等于1e7,差不多一秒
const int INF=0x3f3f3f3f;

void init()
{
	for(int i = 0; i < 10; i++){
		for(int j = 0; j < 10; j++)
		{
			tp1[i][j] = i < j ? (j - i) : (i - j);
			tp2[i][j] = (i - j) * (i - j);
		}
	}
}

int main()
{
	int n, num;
	init();
	while(scanf("%d",&n) != EOF) {
		memset(now, 0, sizeof(now));
		for(int i = 0; i < n; i++) {
			scanf("%d", &num);
			for(int j = 0; j < 10; j++) {
				int temp = INF;
				for (int k = 0; k < 10; k++) {
					int tp;
					if (i) {
						tp = now[k] + tp1[j][num] + tp2[j][k];
					}
					else {
						tp = now[k] + tp1[j][num];
					}
					if(tp < temp) temp = tp;
				}
				now_temp[j] = temp;
			}
			for(int i = 0; i < 10; i++) 
				now[i] = now_temp[i];
		}
		int ans = INF;
		for(int i = 0; i < 10; i++)
			ans = min(ans, now[i]);
		printf("%d\n", ans);
	}
	return 0;
}
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页