IMU
all3n531
牛顿第三定律——当你想获得什么,总要先付出些什么
展开
-
卡尔曼滤波——迭代过程
之前提到了IMU与视觉SLAM的融合,因此也避不开卡尔曼滤波的使用。作为最经典的算法之一,推导过程不再赘述,这里只简述一下迭代的公式。计算预测值,预测值和真实值之间的误差协方差矩阵 有了上式可以计算卡尔曼增益K,然后得到估计值 计算估计值和真实值之间的误差协方差矩阵,为下一次迭代做准备 其中:A为状态转移矩阵,Q为系统噪声方差矩阵,R为观测噪声方差矩阵原创 2017-11-07 17:26:21 · 5445 阅读 · 0 评论 -
视觉SLAM融合IMU问题研究笔记
前言:视觉 SLAM 存在输出频率低、旋转运动时、或运动速率加快时定位易失败等问题,而 IMU 有输出频率高、能输出6DoF测量信息等优点。因此现阶段的一个研究热点是将视觉 SLAM 与 IMU 得到的位姿估计结果进行融合,得到更加鲁棒的输出结果。通过二者的融合,可以解决视觉位姿估计输出频率低的问题,同时位姿估计精度有一定的提高,整个系统也更加鲁棒。这也是一个 VIO (Visual Inertia原创 2017-11-02 15:05:18 · 20124 阅读 · 2 评论 -
SLAM中多传感器融合的时间同步问题
ROS中的时间同步原创 2017-11-28 11:36:45 · 16276 阅读 · 8 评论