卡尔曼滤波——迭代过程

之前提到了IMU与视觉SLAM的融合,因此也避不开卡尔曼滤波的使用。作为最经典的算法之一,推导过程不再赘述,这里只简述一下迭代的公式。

  1. 计算预测值,预测值和真实值之间的误差协方差矩阵
    这里写图片描述

  2. 有了上式可以计算卡尔曼增益K,然后得到估计值
    这里写图片描述

  3. 计算估计值和真实值之间的误差协方差矩阵,为下一次迭代做准备
    这里写图片描述

其中:A为状态转移矩阵,Q为系统噪声方差矩阵,R为观测噪声方差矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值