需要的python包:
pandas:
pandas 是基于NumPy 的一种工具,该工具是为解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。
pandas的数据结构:
**Series:**一维数组,与Numpy中的一维array类似。二者与Python基本的数据结构List也很相近。Series如今能保存不同种数据类型,字符串、boolean值、数字等都能保存在Series中。
**Time- Series:**以时间为索引的Series。
**DataFrame:**二维的表格型数据结构。很多功能与R中的data.frame类似。可以将DataFrame理解为Series的容器。
**Panel :**三维的数组,可以理解为DataFrame的容器。
**Panel4D:**是像Panel一样的4维数据容器。
**PanelND:**拥有factory集合,可以创建像Panel4D一样N维命名容器的模块。
scipy:
- Scipy依赖于Numpy。
- Scipy包含的功能:最优化、线性代数、积分、插值、拟合、特殊函数、快速傅里叶变换、信号处理、图像处理、常微分方程求解器等。
- 应用场景:Scipy是高端科学计算工具包,用于数学、科学、工程学等领域
Scipy由一些特定功能的子模块组成:
参考:https://blog.csdn.net/pythoncsdn111/article/details/98395661
参考:https://docs.scipy.org/doc/scipy/reference/
matplotlib:
Matplotlib 是用于在 Python 中创建静态、动画和交互式可视化的库。
参考:https://matplotlib.org/
seaborn:
Seaborn是基于matplotlib的图形可视化python包。它提供了一种高度交互式界面,便于用户能够做出各种有吸引力的统计图表。
Seaborn是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn能做出很具有吸引力的图,而使用matplotlib就能制作具有更多特色的图。应该把Seaborn视为matplotlib的补充,而不是替代物。同时它能高度兼容numpy与pandas数据结构以及scipy与statsmodels等统计模式