自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(810)
  • 资源 (27)
  • 收藏
  • 关注

原创 大模型安全-生成检测-事实核查-攻击-防御-思考-记忆-融合-语音相关研究

本文整理了关于大模型安全领域的综合性资源,包括7篇综述论文、9个安全数据集以及5篇强化学习相关的安全研究论文。主要涉及大模型的对抗攻击、隐私保护、安全评估等方向,涵盖TruthfulQA、ToxiGen等知名数据集和TrustLLM、HarmBench等关键研究。资源包括知乎博主分享、arXiv预印本和顶会论文,并附有详细的中文讲解链接,为研究者提供了系统性的安全研究参考。

2024-09-11 10:19:33 2705 1

原创 公开 学生课堂行为数据集 SCB-Dataset: A Dataset for Detecting Student and Teacher Classroom Behavior

公开 学生课堂行为数据集 SCB-Dataset Student Classroom Behavior dataset

2023-04-08 22:12:12 15508 7

原创 论文阅读:IJACI 2025 Hallucination Reduction in Video-Language Models via Hierarchical Multimodal Consist

该文档是一篇发表于IJCAI-25的研究论文,核心聚焦于视频-语言模型(VLMs)中的幻觉问题,提出了多层多模态对齐(MMA)框架及两阶段训练策略,以提升模型语义一致性并减少幻觉。该研究通过语义对齐与两阶段训练,从根源缓解了VLMs的幻觉问题,同时提升了长视频理解与视频问答的准确性,为视频分析、多模态学习等领域的实际应用提供了更可靠的技术支撑。通过文本语义监督与多层对齐,强化视觉与文本模态的语义一致性,结合两阶段训练拓展语义多样性,从根源减少幻觉。

2026-01-14 13:00:31 568

原创 论文阅读:SIGIR 2025 Advancing Ship Re-Identification in the Wild: The ShipReID-2400 Benchmark Dataset an

本文针对船舶重识别(Ship ReID)领域数据集稀缺、船舶尺度变化大、易出现部分拍摄等问题,提出了包含2400个船舶ID、17241张图像(采集自53个月真实航道监控系统)的ShipReID-2400基准数据集,并设计了D2InterNet基线方法——该方法采用双分支架构,通过。

2026-01-14 10:04:03 499

原创 论文阅读:arxiv 2026 Extracting books from production language models

该研究通过两阶段提取流程(初始探测+迭代续写),对四款商用大模型开展版权书籍提取实验,发现即便存在模型与系统级安全防护,仍可提取大量受版权保护的训练文本:无需越狱即可从Gemini 2.5 Pro(《哈利·波特与魔法石》提取率76.8%)和Grok 3(70.3%)中提取书籍片段,通过Best-of-N越狱后,Claude 3.7 Sonnet能近乎逐字提取整本书(最高提取率95.8%),而GPT-4.1需更多越狱尝试(20倍)且易拒绝续写(提取率仅4.0%),该结果为大模型版权争议提供了关键技术依据。

2026-01-13 10:38:57 553

原创 论文阅读:AIED 2025 Designing Effective LLM-Assisted Interfaces for Curriculum Development

该研究聚焦LLM辅助课程开发的界面设计挑战,提出两种基于直接操作(DM)原则的新型UI(UI Predefined和UI Open),以解决传统文本界面依赖复杂提示工程、认知负荷高的问题。通过20名不同教育背景参与者的对照实验,将其与标准ChatGPT界面(通过open-webui模拟)在可用性(SUS)和认知负荷(NASA RTLX)方面对比,结果显示UI Predefined显著优于其他两者(SUS得分86.75,NASA RTLX均值2.25),兼具高可用性和低任务负荷;

2026-01-08 20:44:24 967

原创 论文阅读:AIED 2025 Scaling Curriculum Mapping in Higher Education: Evaluating Generative AI’s Role in Cu

课程映射在教育中发挥着关键作用,以确保学习结果、内容、毕业技能和评估之间的一致性。项目要求通常根据行业需求制定,并嵌入课程和评估任务中。课程分析(CA)主要通过机器学习(ML)模型为课程映射过程引入了一定程度的自动化。虽然这种CA方法有助于减轻工作负担,但它们在捕获毕业技能在整个项目中发展的细微程度方面仍然面临挑战。本研究引入了一种使用大语言模型(LLMs)作为协同课程审查者的新方法。

2026-01-08 15:16:01 940

原创 论文阅读:AIED 2025 Automatic Modeling and Analysis of Students’ Problem-Solving Handwriting Trajectories

本文提出了一种结合数字笔技术与多模态大型语言模型(MLLMs)的新型方法CogChain,通过收集25名高中生在数学、物理、化学三科共87,679条解题手写轨迹数据,自动构建逻辑链并从解题维度、时间维度、课程维度展开多维度分析,发现中等复杂度解题模式准确率最高、结构化推理时间占比更高的学生表现更优、不同学科需适配专属解题与时间管理策略等关键结论,为个性化教育提供了重要指导。核心痛点:传统考试评估难以逐一分析学生完整解题过程,学生也难以准确回忆解题思路,无法有效捕捉认知模式。

2026-01-08 14:07:57 747

原创 论文翻译:AIED 2025 Automatic Modeling and Analysis of Students’ Problem-Solving Handwriting Trajectories

理解学生在问题解决中的认知模式对个性化教育至关重要,然而传统方法难以有效捕获和分析这些模式。本文提出了CogChain,一种将数字笔技术与多模态大语言模型(MLLMs)协同结合的新方法,用于自动构建学生在考试期间的逻辑链。我们收集了一个包含25名真实高中学生在数学、物理和化学科目中的87,679条手写轨迹的综合数据集。基于构建的学生逻辑链,我们从三个维度进行了深入分析:解题、时间和课程,揭示了一系列关于他们问题解决行为的发现。

2026-01-08 12:38:38 1011

原创 论文阅读:AIED 2025 Training LLM-Based Tutors to Improve Student Learning Outcomes in Dialogues

该研究发表于AIED 2025会议,提出了一种基于直接偏好优化(DPO)训练开源大语言模型(LLM)辅导器的新方法,通过收集多来源候选辅导话语,结合LLMKT学生模型预测学生正确响应概率和GPT-4o基于教学评分标准的评估构建偏好对,对Llama 3.1 8B进行微调,最终模型在学生正确响应预测上比次优方法(GPT-4o)提升33%,同时教学质量接近GPT-4o,且通过定性分析和人类评估验证了其高质量辅导话语生成能力,但存在未用真实学生测试等局限性。背景。

2026-01-08 12:08:36 757

原创 论文阅读:AIED 2025 AIBAT: AI Behavior Analysis Tool for Teacher-Driven Contextual Evaluation of Language

威斯康星大学麦迪逊分校的研究人员开发了AIBAT(AI行为分析工具),旨在支持教育工作者在特定教学情境中审计和评估大型语言模型(LLMs)等AI支架的利弊,其核心功能包括自定义主题与行为的情境化评估、相关语言变体的行为分析扩展、评估与意义建构的行为可视化,通过让教师指定AI预期行为并开展测试,增强了AI透明度与教师信任;一项涉及14名不同教龄、学科背景教师。

2026-01-08 10:23:13 790

原创 论文翻译:AIED 2025 AIBAT: AI Behavior Analysis Tool for Teacher-Driven Contextual Evaluation of Language

随着AIED越来越依赖不透明的黑盒支架(如大型语言模型)来支持学生学习,人们越来越担心它们在不同教学情境中使用时的局限性。这种不透明性往往削弱了教育工作者的信任并影响他们的看法,导致学校对采用AI支架的抵制。为了应对这些挑战,我们开发了AIBAT,这是一个旨在支持教育工作者在其特定教学情境(例如,学科、年级水平、英语熟练程度)中审计和批判性评估AI系统的潜在益处和危害的工作流程和系统。通过AIBAT,教师可以指定预期行为——即他们期望AI支架应该做什么——并针对这些期望测试系统。

2026-01-08 10:18:02 809

原创 论文翻译:AIED 2025 Dyslexia and AI: Do Language Models Align with Dyslexic Style Guide Criteria?

阅读障碍给全球学生的教育带来了重大挑战。虽然辅助技术已被用于提高可读性,但尚未有研究系统性地评估语言模型(LMs)生成符合既定无障碍指南的阅读障碍友好文本的能力。本概念验证研究评估了三个最先进的语言模型识别和应用阅读障碍友好文本标准的能力。我们的研究发现,它们的知识是有限的并且存在潜在风险。为了解决这个问题,我们引入了DysText,这是一个基于英国阅读障碍协会阅读障碍风格指南量化阅读障碍友好文本特征的新指标。

2026-01-08 08:14:07 573

原创 论文阅读:AIED 2025 Dyslexia and AI: Do Language Models Align with Dyslexic Style Guide Criteria?

本研究是一项概念验证研究,聚焦阅读障碍友好文本标准与语言模型(LMs)的适配性,首次提出量化标准的DysText指标,基于英国阅读障碍协会的《阅读障碍风格指南》评估了Gemma、Phi4和GPT4-turbo三款模型。研究发现,这些模型仅能识别33项标准中的约13项,虽能显著提升文本的阅读障碍友好性(Phi4的DysText平均总分最高达3.24,满分11分),但存在推荐额外非标准标准、生成文本出现拼写错误、内容偏离主题等问题,不能盲目信任其输出,需进一步验证。

2026-01-07 18:46:16 936

原创 论文阅读:AIED 2025 Beyond Final Answers: Evaluating Large Language Models for Math Tutoring

以智能辅导系统为测试平台的自动化评估显示LLM最终答案正确率达85.5%(其中GPT-4o最高97.3%),人类 evaluator 交互式评估表明90%的对话具备高质量教学支持,但仅56.6%的对话完全正确;研究发现LLM虽在提示生成、灵活适配答案格式等方面有优势,却存在中间步骤错误、过度侧重最终答案等问题,结论是LLM目前无法脱离人类监督或额外保障机制独立作为数学智能辅导工具。研究主题:评估大型语言模型(LLM)在数学辅导场景中的正确性与教学质量,聚焦大学代数领域。

2026-01-07 12:22:48 905

原创 论文阅读:LAK 2025 A Novel Approach to Scalable and Automatic Topic-Controlled Question Generation in Edu

该研究针对教育领域教师工作量大、个性化教学需求迫切的问题,提出了一种基于T5-small预训练模型微调的主题可控教育问题生成(T-CQG)方法,通过构建SQuAD+、MixSQuAD等新型数据集,结合预训练策略、模型量化(8位/4位)和数据增强技术,实现了高质量、主题聚焦的问题生成;经人工评估和自动指标(BLEU、WikiSemRel等)验证,模型在语义相关性、语言质量上表现优异,且4位量化后仅占94MB内存,兼具可扩展性和低成本优势。

2026-01-07 10:43:10 919

原创 论文阅读:AAAI 2026 Failures to Surface Harmful Contents in Video Large Language Models

该研究聚焦视频大型语言模型(VideoLLMs)的安全漏洞,发现其因稀疏均匀帧采样、视觉令牌欠采样、模态融合失衡三大设计缺陷,对视频中清晰可见的暴力、犯罪、色情等有害内容存在严重的遗漏问题,有害内容遗漏率(HOR)多数情况下超90%;研究者针对性设计了帧替换攻击(FRA)、画中画攻击(PPA)、透明叠加攻击(TOA)三种零查询黑盒攻击,在5个主流VideoLLMs(LLaVA-Video-7B-Qwen2等)上验证了漏洞的严重性,强调需优化采样策略、令牌压缩和跨模态融合机制以提升模型安全性。

2025-12-29 00:16:46 644

原创 论文阅读:arxiv 2025 The Trojan Knowledge: Bypassing Commercial LLM Guardrails via Harmless Prompt Weavin

本文提出关联知识攻击代理(CKA-Agent)这一动态框架,通过无害提示编织和自适应树搜索,将有害目标分解为多个独立无害的子查询,利用大型语言模型(LLMs)内部知识的关联性,聚合子查询结果实现越狱攻击。该框架在Gemini2.5-Flash/Pro、GPT-oss-120B、Claude-Haiku-4.5等主流商用LLM上实现超95%的攻击成功率,暴露了现有安全护栏在跨轮次意图聚合检测上的缺陷,现有输入级防御措施对其基本无效。

2025-12-28 10:29:55 1016

原创 论文阅读 arxiv 2025 A Survey of Safety on Large Vision-Language Models: Attacks, Defenses and Evaluation

该文档是一篇关于大型视觉语言模型(LVLMs)安全性的综合性综述,系统分析了LVLMs在攻击、防御和评估三大核心领域的研究现状,提出了基于模型生命周期(推理阶段、训练阶段)的分类框架,指出视觉输入扩展攻击面、微调阶段安全对齐退化等独特漏洞,对最新模型Deepseek Janus-Pro进行了安全评估,揭示其在开放问答任务中84.43%的攻击成功率(ASR)等性能短板,并展望了黑盒攻击优化、跨模态安全对齐等未来研究方向,同时提供了包含100余种相关方法的公开知识库。

2025-12-28 00:33:43 924

原创 论文阅读:CVPR 2025 Playing the Fool: Jailbreaking LLMs and Multimodal LLMs with Out-of-Distribution Stra

这篇文档核心是讲:研究人员发现了大型语言模型(比如GPT-4)和多模态模型(比如能看懂图片的GPT-4V)的一个安全漏洞——它们虽然经过了安全训练(比如RLHF,简单说就是让人类反馈来规范模型,不让它输出危险内容),但面对“改头换面”的危险输入时,还是容易被“攻破”(也就是“越狱”),进而输出炸弹制作、黑客攻击这类危险信息。一旦危险输入被“变形”成没见过的样子,模型就拿不准这是不是危险内容(不确定性变高),原本的安全防护就失效了,会乖乖输出危险信息。研究人员搞了个叫“JOOD”的方法,专门利用这个漏洞。

2025-12-26 12:55:09 725

原创 论文阅读:ACL 2025 Jailbreaking? One Step Is Enough!

简单总结就是:这篇文章找到了一个“钻空子”的技巧——用“做防御”的名义骗模型输出有害内容,既不用反复试,也不用针对不同模型单独设计,效率和成功率都远超以前的方法。这篇论文核心是提出了一种超高效的大语言模型(比如ChatGPT、Llama这些)“越狱”方法,简单说就是用“伪装防御”的套路,让模型在不知不觉中输出有害内容,而且一步就能成功,还能适配各种不同模型。这篇文章的关键创新就是“反向嵌入防御攻击(REDA)”,核心思路特别有意思——不直接让模型输出有害内容,而是骗模型说“我们在做防御工作”。

2025-12-25 12:20:13 452

原创 Gemini Developer API 免费版 运行 gemini-2.5-flash、gemini-3-flash

Google Gemini API提供免费额度,适用于轻量版模型如gemini-2.5-flash和gemini-3-flash-preview。用户可通过官方文档获取API密钥,并安装google-genai库进行调用。示例代码展示了如何使用Python调用API获取AI解释或未来事件预测。虽然高级模型无免费额度,但基础版本已能满足简单需求,实测响应效果良好。

2025-12-24 13:45:54 527

原创 论文阅读:arxiv 2025 H-Neurons: On the Existence, Impact, and Origin of Hallucination-Associated Neurons

维度开源模型(如Llama 3)闭源模型(如GPT-4)能否定位具体神经元能(直接看激活、算贡献度、训练分类器)不能(看不到内部,只能间接推断)核心方法拆解内部机制(神经元级实验)观察外部行为(输入→输出反推)最终目标达成方式直接修改H-Neurons激活(比如抑制过度服从神经元)用外部约束/工具(提示工程、RAG)间接抵消影响。

2025-12-23 09:14:59 812

原创 论文阅读:arxiv 2025 Disrupting Hierarchical Reasoning: Adversarial Protection for Geographic Privacy in

而之前的隐私保护方法,对付这种“靠推理找位置”的模型根本没用,所以研究者们搞了一套新方案。里面有6341张超高清照片,涵盖城市建筑、自然风景等各种场景,每张照片都标注了“分层的地理概念”——比如从“欧洲风格城市设施”(大范畴)到“伦敦专属路标”(小细节),还标了这些概念在照片里的位置。有了这个数据集,就能针对性训练保护模型。不过它也有局限:如果照片里有明确的文字(比如“Google 1565号”这种直接标地址的),模型会跳过推理直接读文字,这时这套方法就没用了,这也是后续要解决的问题。

2025-12-19 18:15:28 489

原创 论文阅读:arxiv 2025 DeepSeek-R1 Thoughtology: Let‘s think about LLM Reasoning

优点:会公开思考过程、能拆解复杂问题、比普通模型擅长推理(比如数学题、代码);缺点:思考会“钻牛角尖”、不会控制思考长度、安全风险高、对不同语言/文化态度不一、不会模拟现实场景;未来要改啥:让它别纠结无用细节、能控制思考时长、提升安全性、减少文化/语言偏见、增强对现实场景的理解。简单说,这份研究就像给DeepSeek-R1做了一次“全面体检”,把它的“思考习惯”摸得透透的,也为后续优化这类“会思考的模型”提供了方向。

2025-12-16 10:23:37 1165

原创 论文阅读:ACL fingding 2025 A Mousetrap: Fooling Large Reasoning Models for Jailbreak with Chain of Itera

这篇文档本质是“给AI安全敲警钟”:高能力推理AI虽然聪明,但它的“推理能力”本身可能是个安全漏洞——只要设计一套让它“专注解题、忘了安全”的流程,就能让它输出有害内容。作者希望通过曝光这个漏洞,推动AI行业把安全做得更扎实,避免被坏人利用。

2025-12-15 17:36:50 1041

原创 论文阅读:COLM 2025 Cats Confuse Reasoning LLM: Query Agnostic Adversarial Triggers for Reasoning Models

这篇研究其实是在提醒大家:现在能“一步步解数学题”的AI,看着很聪明,但其实很容易被“无关的小把戏”干扰——人类一眼能看出来“这句话和数学题没关系”,但AI会被绕进去。这对需要AI做准确计算的场景(比如金融、医疗)来说,是个挺严重的安全隐患,后续得想办法让AI更“抗干扰”。

2025-12-14 10:23:49 766

原创 论文阅读:arxiv 2025 H-CoT: Hijacking the Chain-of-Thought Safety Reasoning Mechanism to Jailbreak Large

研究人员怕直接问恶意问题(比如“怎么搞校园枪击”)太明显,模型肯定会拒绝,所以换了个“伪装”——把极端危险、恶意的需求,包装成“教育场景”的请求。这份文档主要讲了杜克大学等机构的研究人员,发现了主流大推理模型(比如OpenAI的o1/o3、DeepSeek-R1、Gemini 2.0 Flash Thinking)在安全防护上的大漏洞,还提出了一种能“攻破”这些模型安全机制的方法,最后呼吁大家重视模型安全问题。总的来说,这份研究就是想提醒大家:现在的大推理模型,虽然推理能力强,但安全防护可能没想象中靠谱;

2025-12-13 15:42:41 702

原创 论文阅读:arxiv 2025 Red Teaming Large Reasoning Models

首先得明白,LRMs和普通的大语言模型(比如平时聊天的AI)不一样——它擅长一步步解决复杂问题,比如算数学题、写代码时,会把思考过程(比如“先算哪一步,再推哪一步”)明明白白列出来,这本来是优点,能让人看懂它怎么想的。为了测准,他们还专门设计了30个任务,覆盖各种场景:比如算比例题、解有上下文的数学题(真实性),测它会不会教“怎么侵权”“怎么暴力伤人”(安全性),测它写代码、解逻辑题时会不会超时(效率)。总的来说,就是给LRMs做了一套“全面体检表”,既找出了它们的弱点,也给改进指明了方向。

2025-12-13 14:50:10 651

原创 论文阅读:NAACL 2024 Self-Guard: Empower the LLM to Safeguard Itself

比如给AI看大量有害/无害的例子,让它不仅能给内容贴「harmful」(有害)或「harmless」(无害)的标签,还能说清为啥——比如“这段教入侵账号,违法,所以有害”,这样AI对“有害”的理解更准,不容易被新攻击骗。这篇文档讲的是一种叫“SELF-GUARD”的新方法,目的是让大语言模型(比如ChatGPT、Vicuna这类AI)能“保护自己”,不被坏人用“越狱攻击”诱导输出有害内容(比如教怎么搞暴力活动、入侵别人账号),同时还不影响AI正常回答问题的能力。

2025-12-12 21:00:26 878

原创 论文阅读:AAAI 2026 Multi-Faceted Attack: Exposing Cross-Model Vulnerabilities in Defense-Equipped Vision

先简单说下背景:现在这些图文AI很厉害,但也怕被滥用,所以开发者给它们加了好几层“安全盾”——比如训练时让AI拒绝有害请求(叫“对齐训练”)、给AI发安全提示(叫“系统指令”)、专门过滤输入和输出的有害内容(叫“内容审核”)。这份文档主要讲了一群研究者发现了当前主流“图文结合AI模型”(比如GPT-4o、Gemini-Pro这些能看图片又能理解文字的AI)的安全漏洞,还发明了一套叫“多面攻击(MFA)”的方法,能突破这些AI的安全防护,让它们输出有害内容(比如教坏人做坏事、传播仇恨言论之类的)。

2025-12-12 20:24:21 833

原创 论文阅读:ACL 2025 LLMs Caught in the Crossfire: Malware Requests and Jailbreak Challenges

这个数据集里有3520个“带陷阱的恶意请求”,是从320个真实的“想生成恶意代码的需求”改出来的,还用到了11种让AI“破防”的手段(比如把恶意关键词换成看似无害的词、用冷门语言提要求),覆盖了6大类恶意行为(比如让代码偷偷下载病毒、偷用户信息、搞瘫痪系统)。最后研究者也说,他们的测试还有不足(比如只用了一种AI生成“陷阱请求”、没覆盖所有恶意场景),但希望这个研究能帮大家重视AI的代码安全问题,后续把AI的“防恶意生成”能力做得更好。而像“用代码片段插在请求里”这种手段,部分AI能防住。

2025-12-12 18:07:29 611

原创 复现 Llama-Guard-4-12B

总的来说,在输入层面Llama-Guard-4-12B测试结果较好。AutoDAN的Prompt(AdvBench)这是安全的(我们人工判断的),模型判断正确。这是安全的(我们人工判断的),模型判断正确。GPU型号 vGPU-32GB * 1卡。确保安装了modelscope。数据盘 免费50GB SSD。这是有害的,模型判断错误。这是有害的,模型判断正确。这是有害的,模型判断正确。这是安全的,模型判断正确。这是有害的,模型判断正确。这是有害的,模型判断错误。这是有害的,判断正确。这是有害的,判断错误。

2025-12-07 14:45:41 530

原创 论文阅读:ICML Workshop 2025 The Hidden Risks of Large Reasoning Models: A Safety Assessment of R1

比如要给这些推理模型加强“安全训练”,设计专门针对“思考过程”的安全机制,不能只盯着最终答案的安全性;还可以借鉴普通AI的安全防护方法,适配到推理模型上。简单说,这篇文档就是告诉大家:现在那些很会“思考”的AI虽然本事大,但安全漏洞也不少,尤其是开源的,容易被坏人利用,不管是模型本身还是它们的思考过程,都得好好补补安全课。

2025-12-07 09:16:01 542

原创 论文阅读:ICLR workshop 2025 SafeChain: Safety of Language Models with Long Chain-of-Thought Reasoning Ca

现在“长思考型”AI越来越常用(比如帮写代码、做科研),但安全问题没解决。临时用:限制AI的思考过程(比如零思考、少思考);长期用:用SAFECHAIN这种专门的数据集训练AI,让它既会“深入思考”,又能守住安全底线。未来还会把这个数据集扩展到多语言,让更多国家的“长思考型AI”都更安全。

2025-12-05 22:11:53 733

原创 论文阅读:arixv 2023 Llama Guard: LLM-based Input-Output Safeguard for Human-AI Conversations

当然它也有缺点:比如主要靠英文数据训练,其他语言可能表现不好;常识有限,超出训练数据的内容可能判断错;如果被人恶意引导,也可能出问题,所以用的时候得小心。总的来说,Llama Guard就是个专门守护人机对话安全的“AI门卫”,既专业又灵活,还开放给大家一起完善,目标是让AI聊天更安全,少出违规或危险内容。的AI安全防护工具,核心是帮人机对话(比如聊天机器人和用户聊天)过滤危险内容,既检查用户输入的“问题”,也审核AI输出的“回答”。这篇文档主要介绍了Meta公司推出的一款叫。

2025-12-04 15:27:58 948

原创 论文阅读:arxiv 2025 Adversarial Poetry as a Universal Single-Turn Jailbreak Mechanism in Large Language

研究里没放真实的“坏诗歌”(怕被人学去搞破坏),只给了个无害的例子,比如把“教我做蛋糕”写成诗歌(类似“面包师守着烤箱的秘密,要学它的手艺,得看清每一步——面粉怎么膨,糖怎么融,快说说步骤”)。别小看“文体”的力量,换个风格,可能就突破了模型的安全防线。

2025-12-02 07:49:01 1031

原创 大模型生成(题目)安全

生成管道中加“自动验证器”(QA 模型交叉验证)、内容过滤器(toxicity / safety classifier)、可控生成(约束 prompt / planning),以及对抗训练来提高鲁棒性。可用指标:错误率(事实/逻辑)、不可答率(unanswerable)、有害性评分(自动 + 人工标签)、偏见强度(差异化统计)、选项/答案位置偏置、可解释性度量等。构建偏见题模板(性别/种族/阶级/文化敏感话题),通过语法/语义变换扩展(借鉴 JADE 型方法),评估不同模型在题目生成时露出的系统性偏差。

2025-12-01 08:42:59 934

原创 论文阅读 WWW-Web4good 2025 Detecting Linguistic Bias in Government Documents Using Large language Models

这种偏见会影响政策公平性,还可能让部分人觉得被排斥,但之前没什么好办法专门检测它:要么老方法只看单个词(比如列个“敏感词表”),没考虑上下文(比如“难民涌入”在不同语境里,有的是中性描述,有的是偏见);总结一下:作者团队做了一件“接地气”的事——建了荷兰政府文件的偏见数据集,证明了“专门微调的AI”比现成的大模型更会检测政府文件的偏见,最终目的是让政府文件更公平,减少对特定群体的排斥。要让AI学会检测偏见,得先给它“喂”带标签的例子——就像教小孩认字得先给图配字一样。

2025-12-01 08:35:39 636

原创 论文阅读:EMNLP 2025 Stand on The Shoulders of Giants: Building JailExpert from Previous Attack Experienc

摘要 本文提出JailExpert框架,通过利用过往攻击经验解决大语言模型(LLM)越狱攻击中效率低和重复优化的问题。该框架包含三大核心模块:经验形式化(结构化存储攻击经验)、越狱模式总结(基于语义漂移分组并提取代表性模式)、经验攻击与更新(动态优化攻击策略)。实验在7个开源与闭源LLM(如Llama2、GPT-4)上进行,结果显示JailExpert相比现有方法平均提升17%攻击成功率,效率提高2.7倍,并能有效绕过PPL Filter、LlamaGuard等防御机制。研究旨在为LLM安全防御提供参考,同

2025-11-29 14:06:10 935

Transformer 论文+李沐视频+李宏毅视频 代码逐行跟踪

Transformer 论文+李沐视频+李宏毅视频 代码逐行跟踪

2024-09-10

生成式人工智能对课堂教学的变革影响 文 - 孙 众

人工智能的发展经历了从计算智能、感知智能到认知智能的三代进化历程。当机器已具备认知智能时,若 课堂教学仍以布卢姆认知目标分类法为理论指导,以培养学生认知能力为主要目标,必然面临重大危机。 要实现生成式人工智能深度融入学校教育教学,为课堂教学带来教育新质生产力,文章提出“四个更重要” 的教学主张:掌握专家思维比专家结论更重要;经历学习过程比呈现学习结果更重要;改变评价理念比改 变评价形式更重要;重视科学教育的同时,培养人文精神更重要。 关键词:生成式人工智能;认知智能;认知目标分类;课堂教学

2024-08-28

我国 2013-2023 年课堂视频分析的研究现状 * -基于 CiteSpace 的可视化林芷洁,杨玉宝

我国2013-2023年课...CiteSpace的可视化_林芷洁 【摘  要】课堂视频分析已成为教师、学生、教育管理者数字素养提升和实现教育高质量发展的重要工具。为探 究国内课堂教学视频分析研究的现状,文章以中国知网 2013-2023 年收录的 276 篇核心文献为计量分析对象,通过 CiteSpace 可视化分析,发现“视频分析”“课堂互动”“话语分析”和“人工智能”等成为课堂视频分析的研究热点, 且在分析技术和分析工具及应用效果等方面取得了显著进展,特别是人工智能技术有望成为推动该领域发展的新技术。 未来,需要扩大课堂视频分析的研究范围,挖掘和设计以深度学习为导向更能反映学科特点的视频分析编码系统,聚 焦师生的数字素养提升,助力新质生产力的发展。 【关键词】课堂视频分析;可视化分析;课堂互动;CiteSpace

2024-08-28

表情分类模型-基于人脸 emotion.pth

['angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise']

2024-08-20

生成式 AI 商业落地白皮书 给 CXO 的 AI 转型战术指南

生成式 AI 商业落地白皮书 给 CXO 的 AI 转型战术指南 01 场景案例大全 Gen-AI 240 应用全场景地图 消费零售 金融 汽车 医药大健康 智能终端 教育和科研 制造 企业服务 案例 01 飞鹤“3+3+2”战略蓝图 AI 能力中台建设 案例 05 汽车销售顾问的强大助手“SalesCopilot” 案例 02 海底捞 x 豆包大模型智慧洞察用户需求 案例 03 海尔消金携手火山引擎,共建消费金融大模型 案例 04 捷途汽车 x 豆包大模型打造智能客服“AI 小捷” 案例 06 北京协和医院基于豆包大模型和 HiAgent 研发智能运 维助手和 HIS 指南针 案例 08 OPPO × 火山引擎通过大模型强化手机终端识别、理解 和响应用户需求的能力 案例 10 面向生物医学领域打造一站式、智能化 AI 操作系统 Bio-OS 案例 09 华硕与火山引擎合作将大模型集成至“豆叮 AI 助手” 案例 11 火山引擎助力南开大学打造“AI + 教育”新生态 案例 12 大模型改善企业信息搜索体验 案例 13 豆包大模型助力晓多科技“AI 训练场 与 全渠道智能知 识库”智

2024-07-28

读论文Rethinking the Role of Demonstrations What Makes In-Context

【读论文】Rethinking the Role of Demonstrations What Makes In-Context Learning Work

2024-03-09

读论文Rethinking the Role of Demonstrations What Makes In-Context

【读论文】Rethinking the Role of Demonstrations What Makes In-Context Learning Work

2024-03-09

YOLOv8 代码包 修改版

YOLOv8 代码包

2023-09-21

ckpt.t7 DHN.pth osnet-x0-25.pth yolov7

https://github.com/Whiffe/Yolov7-tracker

2023-08-24

ckpt.t7 DHN.pth osnet-x0-25.pth yolov7

https://github.com/Whiffe/Yolov7-tracker

2023-08-24

latest-model-099-94.7200.pth

面部表情识别模型权重 https://github.com/Whiffe/PyTorch-Facial-Expression-Recognition

2023-08-09

rfb-face-mask.pth

面部表情识别模型权重 https://github.com/Whiffe/PyTorch-Facial-Expression-Recognition

2023-08-09

aflw2000-data.zip

https://github.com/choyingw/SynergyNet aflw2000_data.zip

2023-08-05

3dmm-data.zip

https://github.com/choyingw/SynergyNet 3dmm_data.zip

2023-08-05

best.pth.tar

https://github.com/choyingw/SynergyNet best.pth.tar

2023-08-05

EGE C/C++ 贪吃蛇

EGE C/C++ 贪吃蛇

2023-07-05

适用于Yolo训练和测试的coco数据集标签文件 train2017.txt和val2017.txt

适用于Yolo训练和测试的coco数据集标签文件 train2017.txt和val2017.txt和train2017.zip和val2017.zip yolov7 yolov5 yolov8

2023-05-06

Youtube-Hands yolov7 detection

Youtube-Hands yolov7 detection

2022-12-12

yolov7 hand detection

yolov7 hand detection

2022-12-12

face-dataset img 人脸识别 样例

face_dataset img 人脸识别 样例

2022-11-30

【计算机视觉】基于ShipReID-2400数据集与D2InterNet模型的船舶重识别方法研究:智能水路交通监控中的跨视角船舶身份匹配

内容概要:本文针对船舶重识别(Ship Re-Identification)领域存在的公开数据集稀缺和船舶图像存在显著尺度变化、部分遮挡等问题,提出了一个新的大规模真实场景基准数据集ShipReID-2400,包含来自2400艘不同船只的17,241张图像,采集自8个摄像头跨越53个月的真实监控系统。同时,提出了一种名为D2InterNet的新型双分支网络模型,通过解耦全局与局部特征学习,并引入部分感知模块(PFPM)、特征交互模块(FIM)和协同交互学习模块(CILM),有效应对船舶图像的不完整性和尺度差异。实验表明,该方法在ShipReID-2400和VesselReID数据集上均达到最先进性能,且在行人ReID数据集MSMT17上展现出良好的泛化能力。; 适合人群:计算机视觉、多媒体检索、智能交通系统领域的研究人员与工程技术人员,尤其是从事目标重识别、船舶监控或跨模态检索的相关从业者;具备深度学习和图像识别基础知识的研究生及以上学历人员。; 使用场景及目标:①用于推动船舶重识别技术的发展,支持海上交通监控、港口管理和违法行为追踪等实际应用;②为学术界提供高质量、真实场景下的船舶ReID基准数据集与可复现的基线模型;③探索具有显著尺度变化和部分可见性的大型物体识别新方法,拓展ReID技术在非标准场景中的适用性。; 阅读建议:此资源提供了完整的数据集构建流程与模型设计细节,建议结合开源代码(GitHub: HuiGuanLab/ShipReID-2400)进行实践复现,重点关注双分支架构的设计动机、局部特征提取机制及其在训练与推理阶段的灵活性,同时可通过消融实验深入理解各模块对性能提升的贡献。

2026-01-14

Scaling Curriculum Mapping in Higher Education: Evaluating Generative AI’s Role in Curriculum Analyt

内容概要:本文探讨了生成式人工智能(GenAI)在高等教育课程分析中的应用,特别是利用大语言模型(LLMs)作为协同课程评审工具,实现对毕业生技能在评估任务中的加权映射。研究基于会计学本科课程数据,比较了GenAI与传统机器学习(ML)方法在技能映射准确性上的表现。结果表明,GenAI生成的技能权重映射与专家判断的一致性更高(Krippendorff’s alpha为0.76),优于传统ML模型(0.65),尤其在口语沟通、团队合作等技能上表现突出。此外,GenAI在高年级课程中的映射一致性更强,显示出其在提升课程对齐、质量保障和个性化学习路径方面的潜力。; 适合人群:高等教育研究人员、教育技术开发者、课程设计师以及关注AI在教育中应用的政策制定者。; 使用场景及目标:①提升课程映射的自动化水平与精细化程度,支持专业认证和教学质量保障;②识别课程体系中的技能发展断层或重复,优化课程设计;③推动个性化学习路径构建,依据学生技能掌握情况动态推荐学习内容;④辅助教师进行课程修订,确保教学活动与行业需求保持一致。; 阅读建议:此研究展示了GenAI在课程分析中的前沿探索,建议读者重点关注其实验设计、评价指标选择及对不同技能和年级层次的表现差异分析,同时注意其局限性(如单一模型与课程背景),以便在实际应用中结合人工审核与多模型验证,提升系统可靠性。

2026-01-08

Automatic Modeling and Analysis of Students’ Problem-Solving Handwriting Trajectories

内容概要:本文提出了一种名为CogChain的新方法,通过结合数字笔技术与多模态大语言模型(MLLMs),自动构建学生在考试中的解题逻辑链,从而深入分析学生的认知模式。研究基于25名高中生在数学、物理和化学科目中产生的87,679条手写轨迹数据,从解题方式、时间分配和学科差异三个维度进行分析,识别出四种典型的解题路径模式(快速解答、视觉推理、逐步推导、综合计算)和三种时间管理类型,并揭示不同学科所需的差异化解题策略。该方法利用Gantt图可视化逻辑链,帮助理解学生的思维过程。; 适合人群:教育技术研究者、智能教育系统开发者、中小学教师及教学设计人员。; 使用场景及目标:①用于分析学生在解题过程中的认知行为与思维路径;②支持个性化教学诊断,优化教学策略;③为AI驱动的智能评测与学习反馈系统提供技术支持; 阅读建议:此资源侧重于手写轨迹数据的建模与认知分析,建议结合实际教学场景理解逻辑链构建流程,并关注MLLM在教育数据分析中的应用潜力与局限性。

2026-01-08

AIBAT: AI Behavior Analysis Tool for Teacher-Driven Contextual Evaluation of Language Models in Educ

内容概要:本文介绍了AIBAT(AI行为分析工具),一种支持教师主导的情境化评估教育领域语言模型的系统。该工具允许教师定义AI支架的预期行为,并在具体教学情境中测试其表现,如学科内容、年级水平和学生英语能力等。通过自定义主题与行为、扩展语言变体分析以及可视化AI行为,AIBAT帮助教师识别AI系统的潜在风险与偏差,增强对AI决策过程的理解与信任。研究通过对14名教师的探索性用户研究发现,教师重视能够主动参与AI评估的过程,将其视为与AI的“对话”,从而提升透明度、控制感和信任度。 适合人群:从事K-12或高等教育的教学工作者,尤其是关注AI技术在课堂中公平、有效应用的教师;教育技术研究人员及AI产品设计者。 使用场景及目标:①帮助教师在实际教学背景下评估AI系统(如自动评分、反馈生成)的行为是否符合教学期望;②识别AI在不同语言表达、学生背景下的偏见与不一致,促进包容性评价;③通过可视化手段提升教师对AI决策机制的理解,推动人机协同的智能增益模式而非自动化替代。 阅读建议:此资源强调教师作为AI评估主体的角色,建议使用者结合自身教学情境尝试AIBAT的功能设计思路,关注如何将隐性教学判断转化为可测试的AI行为标准,并反思AI工具在真实课堂中的伦理与实践挑战。

2026-01-08

Dyslexia and AI: Do Language Models Align with D 【自然语言处理】基于大语言模型的阅读障碍友好文本生成评估:DysText指标在教育可访问性中的应用研究

内容概要:本文探讨了语言模型(如Gemma、Phi4和GPT4-turbo)在生成符合阅读障碍者友好文本方面的表现,基于英国阅读障碍协会的《阅读障碍风格指南》提出了一种新的评估指标DysText,用于量化文本的无障碍特性。研究发现,当前语言模型对阅读障碍相关准则的认知有限,仅能识别约一半的标准,且在生成文本时存在潜在风险,如不当措辞或敏感话题处理不当。尽管模型能在一定程度上提升文本的可读性和结构友好性,但其输出仍需人工审核与修正。 适合人群:从事教育技术、自然语言处理或无障碍设计的研究人员;关注特殊教育与AI应用的开发者及政策制定者。 使用场景及目标:①评估现有语言模型在支持阅读障碍学习者方面的有效性;②推动开发更符合无障碍标准的AI辅助教育工具;③为构建专用数据集和优化提示工程提供实证依据。 阅读建议:此研究强调不能盲目信任语言模型生成的内容,建议在实际应用中结合人工干预与专家反馈,确保内容既符合技术规范又具人文关怀。

2026-01-08

Artificial Intelligence in Education 2025 论文集

欢迎参加第 26 届国际教育人工智能大会(AIED 2025),本次会议将于 2025 年 7 月 22 日至 26 日在意大利充满活力的城市巴勒莫举行。AIED 2025 在 ICORE¹ 评级中被列为 A 级,位列 784 个评级会议场所的前 14.92%,且规模持续扩大、投稿量不断增加 —— 今年初始投稿量已超过 800 篇。因此,在我们庆祝 “推动支持学习的智能人机技术生态系统的科学与工程发展” 这一事业走过 25 年之际,本届会议的结构迎来了重大革新:引入了专门的 “分轨制” 体系。这一新形式旨在适配该领域的发展态势,同时呼应教育人工智能研究的动态性与多面性,体现出该领域的快速发展与日益扩大的影响力。 AIED 2025 的主题 ——“人工智能:包容性、个性化与伦理教育的催化剂:赋能师生,共创公平未来”—— 承载了我们对教育变革性未来的愿景。人工智能正以前所未有的速度发展,生成式 AI 及相关技术引领着这一变革浪潮。这些创新重塑了教与学的过程,为打造个性化、动态化的学习体验开辟了新机遇。尽管传统 AI 技术仍在不断演进、深化我们的认知,但真正的变革在于利用这些技术进步,为教育者提供强大工具,助力其获得更深刻的洞见、实现定制化教学,并提升学生的参与度。

2026-01-07

大语言模型越狱与后门攻防研究-薛鋆豪认知引导攻击与轻量级防御系统设计

内容概要:本文围绕大语言模型面临的越狱攻击与后门攻击两大安全挑战,系统性地提出攻防方法。在越狱攻击方面,提出基于认知引导的攻击方法(CGA),通过代码模态语义混淆、低资源语种攻击与动态响应合成构建多级攻击链,显著突破主流模型的安全对齐机制,对GPT-4o-mini的攻击成功率高达86.21%;同时提出基于滑动窗口的片段化动态防御方法,通过分割输入、并行风险评估与决策融合,有效降低攻击成功率。在后门攻击方面,针对第三方模型代理场景,提出自触发与他触发两种新型后门机制,后者通过四态转换实现跨用户隐蔽传播,攻击成功率高达98.85%;并提出基于小型反思模型的轻量级用户侧防御方法,通过“分析-修复”两阶段机制提升代码安全性,将触发状态下的代码通过率从3.50%提升至64.78%。研究揭示了大模型在安全对齐中的认知缺陷,为构建更可靠的AI安全体系提供理论与技术支撑。; 适合人群:具备一定人工智能与自然语言处理基础,从事网络安全、大模型研发或AI安全研究的专业技术人员及硕士及以上学历的研究人员。; 使用场景及目标:①深入理解大语言模型在越狱与后门攻击中的安全漏洞及防御机制;②研究跨模态攻击、低资源语言扰动、代码生成后门等前沿安全问题的攻防技术;③为构建第三方模型服务中的安全审查与用户端防护方案提供实践参考。; 阅读建议:此资源兼具理论深度与实验验证,建议结合论文中的实验设置与消融分析,复现核心攻防流程,并重点关注CGA攻击链与反思防御模型的设计逻辑,以深入掌握大模型安全机制的薄弱环节与应对策略。

2025-09-26

ASR(语音识别)语音/字幕标注 及转化为ASR Paraformer 可训练数据

标注网站:https://whiffe.github.io/VIA/via_subtitle_annotator.html 标注教程:https://blog.csdn.net/WhiffeYF/article/details/148530647 0001.mp4 视频,标注用 0001.json 标注后保存的json json2ASR.py 将json转化为ASR训练格式文件 train_text.txt train_wav.scp 训练格式文件,json2ASR生成 wav 文件夹,里面是抽取的wav音频,训练用,json2ASR生成 extract_audio.py 从0001.mp4中抽取3分钟wav音频文件的脚本,用于测试 0001.wav 从0001.mp4中抽取3分钟的wav音频,测试用

2025-06-11

chatgpt-detector-roberta

chatgpt-comparison-detection,检测单条文本,中文版, chatgpt-detector-roberta

2025-03-19

大型语言模型的各种安全性议题

视频:https://www.youtube.com/watch?v=MSnvknLywUc&t=1116s PPT:https://drive.google.com/file/d/15afa2wJBbVbykn-KazUoiBSz8UF5ttI0/view?pli=1

2025-02-26

语文课堂数据分析:《西门豹治邺》教学洞察

内容概要:本文提供了针对语文课程《西门豹治邺》的一个详细的课堂教学数据分析报告。报告不仅评估了教学方法的有效性及其带来的学生参与情况的变化,还从多个维度(如教师讲解方式、互动频率、学生的个体表达机会等)分析了一堂课的实际效果,旨在揭示并改善当前教学中的潜在问题,并为教育工作者提供了宝贵的见解和改进建议。 适用人群:一线语文教师及相关教研人员。 使用场景及目标:用于反思现有授课方式的优点和缺陷,确定需要改进的地方并优化教学质量,确保每一个学生都能得到应有的关注和发展。 其他说明:此报告通过大数据技术客观分析课程实际运行状况的同时也非常重视教师的专业判断与实践经验相结合的方式,从而更好地服务于教学实践的发展。

2024-10-09

宁波荣安实验中学AI驱动的教学评价系统需求验证报告

内容概要:本文档介绍了为宁波荣安实验中学定制的人工智能分析解决方案,旨在利用AI技术和‘影像大脑’平台来评估‘听课量化评分表’以及‘学导型’生本课堂教学质量表。通过对多个课堂评价要素的技术可行性验证显示:大部分关注点如‘抬头率’‘趴桌现象检测’等都能满足实际应用需求并已拥有较为成熟的技术支撑。但在某些特殊指标如学生的动手操作率方面尚须更多的研究和具体的样本集支持。 适用人群:项目实施团队成员及技术负责人。 使用场景及目标:验证基于人工智能技术对于中小学教室教学质量监督的实际应用可能性和效率提升程度。 其他说明:现阶段结果显示该系统的大多数需求都可以得到技术支持并且有着很好的前景;但部分细节仍然面临技术挑战需要进一步细化和完善。

2024-10-09

从同课异构角度看乡村初中英语课堂中学习活动观的实践-李梦晓

内容概要:该论文通过对湖北乡村初中英语课堂进行同课异构的教学活动设计对比分析,指出了在实践中存在的诸如教师对学习活动观概念理解不足以及设计活动中对学生自主性的忽视等问题,并为优化乡村教师理解和运用该理论提供了具体建议。 适用人群:初中英语教师,特别是服务于乡村地区的教师,乡村地区教育研究人员以及致力于改善英语教学质量的教学管理者。 使用场景及目标:适用于乡村学校的初中英语听说课堂的教学准备阶段,目的在于优化教师针对不同学生的差异化需求调整教学法并有效地融入学习活动关的核心思想。 其他说明:研究表明乡村地区教育质量的改善取决于教师对现代化教学理念的理解深度及其课堂执行的效果。

2024-10-09

同课异构,呈现精彩课堂-以“认识平行线”教学为例胡梦文 同课异构应用于《认识平行线》教学实践探索

内容概要:本文通过两位教师对中国苏教版小学四年级的《认识平行线》这一章节的课堂教学案例进行对比解析。分别展示了两种不同的教学流程设计,一种是以小组合作探究为主的方式讲解平行线的基本概念和特性,另一种则是基于生活情景引导的方式介绍平行线及其应用场景,通过这两种不同策略的实际操作来说明'同课异构'模式下课堂可以呈现出不同风采,进而推动教学质量的提升和教学模式多样化。同时也探讨了选择适当的教学方法对学生掌握数学本质概念的重要性和练习设计对于理解和运用新知识的作用。 适用人群:一线教育工作者特别是中小学校授课老师、课程开发者、研究人员以及其他致力于课程设计、教学改进的研究人员。 使用场景及目标:用于指导教师更好地进行同课异构设计与实践活动,通过多样化的教学方式激发学生的学习兴趣,深化对教学大纲的认识,最终达到提高教学质量的目标,同时亦鼓励教师专业上的持续发展和个人学术素养的提高。 其他说明:此外还阐述了这种教学方法背后的理念支持,即强调教师应当充分尊重个体差异并发挥各自优势,以此为基础来进行课程准备并展开教学实践,使得整个教科研氛围更为活跃富有成果。

2024-10-09

课堂师生交互智能分析技术研究综述-崔家郡

课堂师生交互智能分析技术研究综述-崔家郡

2024-10-09

基于课堂智能分析大模型的教...学能力分析框架及其应用研究-方海光

基于课堂智能分析大模型的教...学能力分析框架及其应用研究-方海光

2024-10-09

人工智能赋能研究生课堂教学质量评价新模式-刘长红

人工智能赋能研究生课堂教学质量评价新模式-刘长红

2024-10-09

基于人工智能的课堂分析架构-一种智能的课堂教学研究-杨晓哲

基于人工智能的课堂分析架构-一种智能的课堂教学研究-杨晓哲

2024-10-09

基于生成式人工智能的探究式教学设计与应用研究-张明飞

基于生成式人工智能的探究式教学设计与应用研究-张明飞

2024-10-09

mobilenet-v2-b0353104 resnet18-5c106cde resnet34-333f7ec4 预训练模型

mobilenet_v2-b0353104.pth、resnet18-5c106cde.pth、resnet34-333f7ec4.pth 预训练模型

2024-09-24

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除