问卷分析(二)

文章讲述了在问卷分析中如何进行研究变量的描述性分析、相关关系分析,包括使用Pearson和Spearman相关系数。此外,还介绍了线性回归(简单和多元)和逻辑回归在假设验证中的应用,以及方差分析和T检验在差异分析中的使用,强调了各类统计方法的适用条件和判断标准。
摘要由CSDN通过智能技术生成

Tips:对问卷进行分析前,如果有反向题目,需要对反向题目进行重新计算赋值
在这里插入图片描述

(六)研究变量描述性分析

  • 目的在于研究样本对于变量的整体态度情况
  • 通过计算变量的平均值去分析,有时也会计算变量的中位数值,或者利用折线图形式去展示变量的平均值排序情况。

(七)研究变量相关关系分析

相关分析用于研究两两变量之间的关系情况,包括是否有关系和关系紧密程度。通常一个变量由多个题项表示,因此进行相关分析前需要计算出多个题项的平均值,用于代表对应变量。

分析方法:如果变量呈现出正态性或者近似正态性时,则使用 Pearson 相关系数法,否则使用 Spearman 相关系数法
在这里插入图片描述
(1)Pearson 相关系数是当前问卷研究中最为常见的相关分析方法。

  • Pearson 相关系数范围介于-1~1 之间,绝对值越大说明两个变量间的相关性越紧密
  • 分析变量相关关系时,首先分析相关系数值是否呈现出显著性,如果呈现出显著性则说明两变量之间有相关关系,才能进行相关分析。如果 Pearson 相关系数大于0表示两变量间有着正相关关系,反之为负相关
  • 接着判断两变量相关关系的紧密程度,根据经验统计以及统计基本情况来看,问卷研究中如果Pearson 相关系数绝对值>0.7 就表示强正相关;如果该值>0.4 表示较强正相关;如果 Pearson相关系数绝对值小于 0.4,但依然呈现出显著性,则说明两变量间的相关紧密程度较低
    在这里插入图片描述

(2)Spearman 相关系数也是当前使用较为广泛的相关关系研究方法,并且其判断标准与 Pearson 相关系数法的判断标准完全一致。即使变量呈现出非近似正态分布,Pearson 相关系数法与Spearman 相关系数法结论基本保持一致性。

在这里插入图片描述
实验结果显示:Sig值等于0.000,小于0.05,由此可知逃避压力和手机依赖存在很强的显著性,即二者有相关关系,且相关系数等于0.329,大于0.2,二者相关紧密程度较低。

(八)研究变量相关关系分析

完成上一步变量间相关关系研究之后,接着需要进行研究假设的验证分析。通常来讲,研究假设是自变量对于因变量的影响关系,或者差异关系研究。
在这里插入图片描述
在问卷分析中,变量可以分为两类:定量变量和定性变量。

  • 定量变量(Quantitative Variables):也称为数值变量,是表示数量或度量的变量。定量变量可以进行数值运算和统计分析。它们通常是连续的或离散的数值。例如,年龄、收入、身高得分等都是定量变量
  • 定性变量(Qualitative Variables):也称为分类变量,是用于描述性质或特征的变量。定性变量通常无法进行数值运算,而是用于分类、描述或标识不同属性或类别。定性变量可以是名义型或有序型。例如,性别(男、女)、婚姻状况(已婚、未婚)、学历(小学、中学、大学)等都是定性变量

因此,如果因变量属于定量变量,则使用线性回归分析(自变量只有一个即为简单线性回归分析)或者 SEM 结构方程模型进行假设验证;如果因变量为分类变量,则使用 Logistic 回归分析方法

1.线性回归分析——多元线性回归

(1)多数假设验证均会使用多元线性回归分析方法进行假设验证

  • 除了将自变量放入模型,有时也会将样本基本背景信息,比如性别、学历、年龄和收入、婚姻情况等作为控制变量一并放入模型,以防止样本个体属性带来的干扰作用。
  • 如果性别需要放入模型进行分析,而性别又是分类变量,那么此时性别被称为虚拟变量,需要首先对性别(选项为男性和女性,问卷里面数字编码分别是 1 和 2)进行重新编码处理为一列(两个选项生成为一列),此列名称为男性,并且这一列里面的数字 1 代表男性 0 代表女性(0 代表女性,那么女性即为参照对比项,如果男性作为参照对比项也类似处理),并且将重新编码后名称为“男性”这个变量放入模型而非原始数据“性别”这一变量
  • 类似地如果专业(假设专业有四个选项分别是市场营销、心理学、教育学和管理学,问卷里面这四个专业的数字编码分别是 1,2,3 和 4)也放入模型,那么应该生成三列,这三列名称分别是市场营销、心理学和教育学(以管理学作为参照项)。并且市场营销这一列里面数字为 1 则代表样本为市场营销专业,0 则为非市场营销专业,心理学这一列里面数字为 1 则代表样本为心理学专业,0 则为非心理学专业,教育学这一列里面数字为 1 则代表样本为教育学专业,0 则为非教育学专业(此时以管理学作为参照对比项,如果想以其它专业作为对比项也类似处理)。并且将重新编码后名称分别为“市场营销”,“心理学”和“教育学”这三个变量纳入模型而非原始数据“专业”这一变量
    在这里插入图片描述
    (2)多元线性回归分析主要关注三个指标,分别是 F 检验,R2,和自变量是否通过 t 检验
  • 第一个指标为模型是否通过 F 检验(ANOVA 检验),如果对应的 P 值小于 0.05 即说明通过 F检验,即意味着模型有意义,自变量中至少有一个会对因变量产生影响关系【模型通过 F 检验(ANOVA 检验)是基本前提】
  • 第二个指标即 R2,此值介于 0~1 之间,其代表回归方程模型拟合情况,如果为 0.5 则说明有 50%的样本分布在回归模型上,R2 表示自变量 X 对于因变量 Y 的解释力度,此指标越高越好,但并没有固定标准
  • 第三个指标指每个自变量是否通过 t 检验,判断标准是自变量对应的 P 值是否小于0.05(并且大于 0.01),如果小于 0.05 即说明某自变量对因变量的影响关系在 0.05 水平上显著,如果小于 0.01 即说明某自变量对因变量的影响关系在 0.01 水平上显著性。
  • D-W 值代表自相关性判断指标,自相关性通俗地讲即前一个样本的填写是否会影响下一个样本的填写,D-W 值判断标准为其是否在 2 附近,通常在 1.8~2.2 之间则说明没有自相关性,问卷研究中此指标基本上均可以达标,除非样本之间确实有着互相影响填写的情况产生
  • VIF 值是多重共线性判断指标,多重共线性是指自变量之间是否存在着较强的相关关系,如果自变量之间有着很强的相关关系,那么则可能出现多重共线性问题。VIF 值的判断标准通常为 10 以内即可,较为严格的标准是该值需要在 5 以内
  • 如果 VIF 值高于 10,即存在严重多重共线性问题,那么自变量之间的相关系数值也应该非常高(大于 0.7),当前最好的解决办法是使用探索性因子分析的“1 提取因子”功能对各个自变量重新探索,对应研究假设也需要随之而改变,另外一种解决办法为进行多次简单线性回归分析,即比如对应一个因变量时,有五个自变量即进行五次简单线性回归分析,最后汇总多次简单线性回归分析结果,整理为一个简洁表格进行假设验证

2.线性回归分析——简单线性回归

简单线性回归分析模型中仅有一个自变量,如果自变量与因变量之间有着显著相关关系,那么进行简单线性回归分析也肯定可以得出自变量对因变量有影响关系的结论。与相关分析对比,仅多出 R2 这一有意义的指标值,并无其它区别,简单线性回归分析的使用频率较低

3.线性回归分析——SEM 结构方程

  • 在进行结构效度验证时,如果较多题项的因子载荷系数低于 0.5,也或者题项与因子对应结构关系并不稳定时,SEM 结构方程分析会出现拟合指标不合格的情况,即 SEM 结构方程模型不能使用
  • 如果研究人员希望进行 SEM 结构方程模型构建,则一定需要在进行探索性因子分析或者结构效度验证时将因子载荷系数较低,并且题项与因子对应关系出现偏差的题项进行删除处理,以及每个细分维度最好有三个或者更多题项表示,并且研究量表参考来源需要较为经典,这样才可能取得良好的分析结果。如果相关分析结果显示变量间的相关关系不显著,也或者相关系数值较低(小于 0.3)时,SEM 结构方程模型分析结果也较差。

4.逻辑回归分析

遇到了再说

(九)差异分析

在上一步完成假设验证后,此部分差异分析目的在于挖掘出更多有价值研究结论,比如男性和女性样本对于研究变量是否有着差异性看法
在这里插入图片描述
方差分析或者 T 检验时(除开单样本 T 检验),均是研究 X 对 Y 的差异情况。这里的 X一定是分类变量,而 Y 一定是定量变量,如果 X 和 Y 均为分类变量,那么应该使用卡方分析研究差异情况。

1.方差分析(F检验,用于三组及以上的样本)

(1)单因素方差分析

  • 指单一因素(比如性别)对于另一变量的差异情况,可以通过该分析研究不同性别样本对于研究变量的态度差异情况,也或者不同学历样本对于研究变量的态度差异情况
  • 需要每个选项的样本量大于 30,比如男性和女性样本量分别是 100 和 120,如果出现某个选项样本量过少时应该首先进行组别合并处理,比如研究不同年龄组样本对于研究变量的差异性态度时,年龄小于 20 岁的样本量仅为 20个,那么需要将小于 20 岁的选项与另外一组(比如 20~25 岁)的组别合并为一组,然后再进行单因素方差分析
    在这里插入图片描述
    【分析——>比较均值——>单因素 ANOVA——>选择分析变量进入列表框——两两比较——选项】。

在这里插入图片描述

(2)多因素方差分析
多个因素(比如性别和年龄)对于另一变量的差异情况,多因素方差分析通常用于类实验式问卷研究
【分析——>一般线性模型——>单变量——>选择分析变量进入列表框】
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
针对多因素方差分析,其共输出三个有用表格,以及相应图形。三个表格分别是“主体间因子”表格,“误差方差等同性的 Levene 检验”表格和“主体间效应的检验”表格

2.T检验(只能分析两组样本)

(1)单样本t检验

  • 检验样本与设定的检验值(具体的)是否有差异
  • 分析——比较平均值——单样本T检验

(2)独立样本t检验

  • 是针对于两个样本之间差异性的检验
  • 分析——比较均值——独立样本T检验

(3)配对样本t检验

  • 同一个样本在两次测验之间的差异性,如同一个学生在第一次测试和第二次测试之间的成绩是否有差异性
  • 分析——比较均值——配对样本T检验

多数情况下会使用独立样本 T 检验,比如男性和女性的差异对比应该使用独立样本 T 检验。如果是实验或者“类实验”式研究,则需要使用配对样本 T 检验,比如实验前和实验后对比应该使用配对样本 T检验

3.卡方检验

针对非量表类题项关系研究,即分类与分类数据之间的关系研究,应该使用卡方分析,比如研究性别与宗教信仰之间的关系时,性别和宗教信仰均为分类数据,因而应该使用卡方分析。卡方分析又称为交叉表分析,它是通过分析不同类别数据的相对选择频数和百分比情况,进而行差异判断,单选题或者多选题均可以使用卡方分析进行对比差异。

(1)单选题卡方分析
卡方分析是在两个分类数据进行交叉的基础上,加上统计检验值,即卡方值和对应的 P 值。通过对 P 值进行判断,进而说明两个分类数据之间是否有着联系。比如性别与是否戴隐形眼镜之间是否有关系,也或者学历(学历通常情况下看作为分类数据)与宗教信仰之间的联系情况。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值