- 博客(116)
- 资源 (4)
- 收藏
- 关注
原创 无线通信代码搬运/复现系列(5) :多用户 MISO 下行的最佳能效传输波束成形
该代码利用凸优化工具箱YALMIP和MOSEK求解器,设计了一个优化算法来最小化MIMO系统中的发射功率,并确保每个用户的信噪比要求得以满足。通过定义合适的约束条件和目标函数,该算法能够有效地设计波束成形器,从而在满足SINR要求的前提下最小化功率消耗。一阶近似end能效最大化 分支定界% 设置 t 的上下限% 计算初始盒子gap = 0;ms = 3;% 初始最优目标值和上界nBoxes = 1;iColor = 1;
2024-08-19 13:58:29 1035
原创 无线通信代码搬运/复现系列(4) :MISO 广播信道的迫零脏纸编码波束形成器设计
这个函数计算了一个优化问题中的残差向量,用于在每次迭代中判断优化的进展情况。残差向量结合了功率分配、预编码矩阵和对偶变量的信息,在优化算法中用于评估当前解的质量,并决定是否需要进一步迭代。该代码通过两种方法设计MIMO系统中的波束成形器,并比较了两种方法的性能。迭代法通过逐步优化实现波束成形设计,而CVX方法则通过求解凸优化问题直接得到结果。最终的结果比较表明了迭代方法的有效性和收敛性。
2024-08-19 12:11:59 772
原创 无线通信代码搬运/复现系列(3) : MIMO 广播信道的加权和速率最大化:使用脏纸编码和迫零方法
这段代码实现了一个基于障碍方法的复杂优化算法,主要用于MIMO系统的预编码矩阵设计。在求解过程中,算法需要解决具有逐个天线功率约束的优化问题,通过逐步更新原始和对偶变量,最大化系统的和速率。% 用户的有效信道% (33)中的矩阵Ah_bar=[];% B{iUser} 是从用户1到(iUser-1)的复合信道的正交基end% 计算 (33) 中的矩阵 Aendend% (31)中 \Omega 的初始值% 设置为单位矩阵(也可以是其他值)end% 回溯线搜索参数。
2024-08-19 11:10:22 460
原创 无线通信代码搬运/复现系列(2) : 可实现速率优化对于具有可重构智能表面的 MIMO 系统
受此启发,我们研究了配备 RIS 的多流多输入多输出(MIMO)系统的可实现速率优化,并制定了传输信号的协方差矩阵和 RIS 元素的联合优化问题。模拟结果显示,所提出的 PGM 实现了与最先进基准方案相同的可实现速率,但计算复杂度显著降低。此外,我们证明 RIS 应用特别适合提高室内环境中的可实现速率,因为即使少量的 RIS 元素也可以提供显著的可实现速率增益。代码实现了一个基于投影梯度法(PGM)的迭代优化算法,用于联合优化发射协方差矩阵和再生智能表面(RIS)相移,从而最大化通信系统中的可达速率。
2024-08-18 16:18:35 352
原创 无线通信代码搬运/复现系列(1) : 重新审视具有每天线功率约束的 MIMO 容量:固定点迭代和交替优化
与可能接受类似注水解决方案的和功率约束对应物不同,PAPC的MIMO容量主要是在通用凸优化框架下研究的。作为起点,我们首先考虑单用户MIMO场景,并提出了两种可证明收敛迭代算法来求其容量,第一种方法基于定点迭代,另一种方法基于交替优化和极小最大对偶性。具体而言,与现有方法相比,所提出的两种方法在每次迭代中都能利用填充水算法,收敛速度更快。然后,我们将所提出的解决方案扩展到多用户MIMO系统,这些系统具有基于脏纸编码的传输策略。在这方面,使用PAPC的高斯广播信道的容量区域也是使用闭合形式表达式计算的。
2024-08-18 16:01:10 165
原创 PDE笔记
以双元一阶PDE为例,需要求解的对象是一个未知的平面数量场所谓特征曲线,就是一族曲线,对于其中一条曲线,数量场在上面的每一点的取值都相同三元 乃至n元同理所以解数量场就变成解一堆特征曲线,由于没给初值,数量场在特征曲线上的取值并不重要,你只要求解出一条特征曲线,就知道所有特征曲线,因为这些特征曲线之间互相“平行”,有点像动力系统里的解曲线一样,它们不会相交(除了某些奇点,这里不考虑)
2024-08-02 13:41:10 1073
原创 宏观经济学 第一章
到了 1950 年代中期,经济基本恢复正轨,现在有足够的总量数据可以分析其增长表现。罗伯特·索洛的 1956 年论文——基本新古典增长模型——以及他 1957 年关于增长核算的论文成为了经济增长方面既有实证又有理论的蓬勃发展的动力。索洛在增长核算论文中的想法是,可以利用产出和投入的度量、投入的价格以及基本的生产理论来将总体增长分解为每个投入的贡献,最终得到一个残差,可以被视为技术变革:索洛残差。因此,正是由于对数量和价格的系统测量,这种分析现在可以进行。跨国协调数据是具有挑战性的,因为不同国家之间存在差异
2024-08-01 15:10:27 786
原创 可微但偏导数不连续同样没啥用
我们将在例1.9.4中看到,一个函数 ( f: \mathbb{R} \to \mathbb{R} ) 在 ( x ) 处可以有正导数,但它在 ( x ) 的邻域内却没有增加!总而言之,就是因为偏导数带来的不连续性,虽然导数在该点处可以有定义,但却不连续,以此题为例,导函数在趋近原点时发生无穷的正负震荡,因而函数原点邻域内没有呈现出变化趋势,所以尽管函数在原点连续,也可微,但由于导函数不连续,导致函数在原点附近的任何邻域都无法被线性/一次函数所近似,这是一个非常有意思的例子。
2024-07-27 16:40:21 245
原创 变分法笔记4
时,哈密顿量是欧拉方程系统的第一个积分。我们将函数和曲线都称为。具有我们所需的尽可能多的连续导数。的 Gâteaux 变分方向为。,则欧拉方程系统简化为代数方程组。是一个移动粒子的位置,那么。c. 可接受的变分是平滑函数。点处追踪的曲线相切。是向量值的,特别地,是。中的函数施加边界条件,满足上述欧拉方程系统。我们考虑形式如下的泛函。是系统的第一个积分。
2024-07-16 17:20:32 898
原创 变分法笔记3:多变量函数
将在极值函数中找到,我们解决欧拉方程(5),满足边界条件(6)。有了拉格朗日量(7),欧拉方程是。这个二阶非线性椭圆型偏微分方程称为最小曲面方程。满足边界条件(6)的解。拉普拉斯方程和泊松方程都是应用数学中的基本偏微分方程。界定的最小面积曲面是Plateau问题。中的每个成员都具有我们需要的任意阶连续偏导数。上的平滑曲面的面积。中的一条光滑闭合曲线,其投影。的边界上消失的光滑函数。的Gâteaux变分是。假设你需要找到覆盖在。c. 可接受变分的类。对于所有可接受的变分。图像部分的曲面面积是。
2024-07-16 17:08:56 554
原创 变分法笔记2
在微积分中,(c)通常通过二阶导计算完成。变分法中有二阶导数测试,但我们将忽略它,转而利用几何或物理直觉来确定极小值。为了专注于变分法的主线,不去细究一般的细节定义,我们将假设。的极值是满足边界条件 (2) 的解。是从 (0, 0) 到 (1, 1) 的光滑曲线。哈密顿量是一阶积分。我们通常可以为欧拉方程写下一阶积分。该泛函定义在满足边界条件的光滑函数。由于 (2) 中的边界项消失,剩下。显然,这也是所寻求的极小化解。由在区间端点处为0的光滑函数。由 (12) 和 (13),c. 在极值中识别极小值。
2024-07-12 16:20:06 813
原创 变分法笔记1
在微积分中,你会在函数的临界点中寻找局部极小值。在变分法中,你会在泛函的极值点中寻找局部极小值。是从 (0, 0) 到 (1, 1) 的光滑曲线。上的 Gâteaux 变分(或一阶变分)定义为。计算 Gâteaux 变分时,需要选择那些使得。处是平稳的(stationary)。这样的向量称为可行变分。的局部极小值点,如果存在。被称为拉格朗日函数。表示其可行变分的类。
2024-07-12 15:37:24 569
原创 现代控制中可控性的Gramian判据
数学好的人,可能看一眼根据形式就能推出gramian的构造,但对我这种比较钻牛角尖的人,我就想有一个逻辑链条——gramian是怎么被构造出来的?就是说,你假设可控,但这个你构造出来的格拉姆矩阵是奇异的,然后会导致矛盾,具体的就不说了,大家可以自己证明.是任取的,那我们现在就得到了一个充分条件(注意 必要性还得不到)ok,那么你得到了充分性条件,而这个条件的必要性竟然很容易验证。是任意一个n维的向量 我们想找一个条件,让这个等式成立。但这样有一个问题,你从这里的不出任何有用的结果。
2024-06-05 21:50:02 958
原创 列紧性推出紧性的证明
紧和列紧看上去毫不相关,因此紧推列紧主要是反证法 很简单。的 Lebesgue 数。的 Lebesgue 数)具有性质:如果。由引理 3.6 可知这无限序列无界,这与。但列紧推紧用反证法比较困难 因此拆开来证明。这个证明还是比较经典的,要用到两个引理。上的一个开覆盖,则存在一个覆盖。证明: 假设相反. 记述性质的。, 从而满足对应的所有要求覆盖。但度量空间才能满足列紧推出紧。不存在, 则对任何自然数。)的所有点,存在某个半径。度量空间上 紧和列紧等价。紧推出列紧一直都是可以的。. 另外,对任何包含。
2024-05-26 20:27:28 797
原创 随机过程的谱分析
如果是高频信号,那么不同时刻的取值应该是没什么关系的,比如前一个时刻取-100还是+100,后一时刻都能取0或者±1 ,这样来看随机过程的样本曲线就很不平滑,对应就是高频成分多, 而在自相关函数上就是一个衰减极快的曲线,极端情况就是一个脉冲曲线…的形状是一个比较宽的钟形曲线,这说明随机过程在任意时刻的取值都有比较深远的影响,能够影响很后面的值(同时也说明该时刻的取值受之前的取值影响很大),这说明这个随机过程的频率范围比较低.的傅里叶变换对应的单位是功率密度(功率在频率上的密度就是能量)
2024-05-19 15:24:59 940
原创 多变量函数的求导与求梯度/矩阵求导
注1: 梯度是针对实值函数的, 且其定义是基于Jacobian的, 也就是说现有导数才有梯度. 梯度的定义可以拓展到。这是很显然的结果, 只需要略加思索即可知道这是正确答案.指n阶实对称矩阵, 此处不再赘述.与之相对应, 对于一般的实值函数。这和单变量函数的情形是一致的., 则根据链式法则, 有。易知梯度为一个列向量.易知对于一般的实值函数。是一个行向量, 定义。
2024-04-23 21:53:30 762
原创 jupyter notebook用不了multiporcessing的问题
显然,有人创建了一个与多处理类似的库,称为多进程,该库在 jupyter 笔记本中工作。但是,我建议作者 () 为此在笔记本中放置一个!pip install 多进程,或者添加一条注释,说从 Spyder 等 IDE 运行它。由于多进程库有其自身的问题(必须在进程中重新导入numpy),因此可能会选择后一种选择。有同样的问题,这是因为多处理在 Jupyter 笔记本中无法本机工作。在跑一本drl书中的代码遇到这个问题,到书的github页面看到别人也有类似的问题。
2024-04-19 11:16:45 422
原创 Matlab怎么画局部放大图
先放大到你想要的细节,然后右键选中坐标区域,复制,然后缩放到全页面,再粘贴,这样放大图就粘贴到原图中了。然后自己插入一个箭头和一个矩形框标注一下就行了。这是我画的一张图,你说的是不是这个意思?Matlab怎么画如下的局部放大图?转载知乎 自己做笔记。知乎: 峡谷普通演员。
2024-02-27 21:49:47 559
原创 如何学习数学
很可能,你的思维并不能让你走得很远,所以你别无选择,只能读书中的证明,但通过一两次的阅读却无法理解它。)这就是为什么为了深入理解一个定理,仅仅读一遍证明是不够的,更有益的是一遍又一遍地阅读它,将其复制到你的笔记本上,并尝试将其应用于各种问题。数学是一个高度技术性的学科。证明可能是正确的,但整体画面却是模糊的、朦胧的。另一方面,当我理解来自我自己领域的定理时,即使忘记了证明,我也能完全理解它,就像理解 2 + 2 = 4 的事实一样:对 2 + 2 = 4 背后数学真理的本能把握产生了理解,而不是来自证明。
2024-02-24 21:13:37 458
原创 二阶系统的迹-行列式平面方法(trace-determinant methods for 2nd order system)
让我们再次考虑二阶线性系统dtdYAY我们已经知道,分析这种二阶系统。最主要的是注意它的特征值情形。(此处没有重根的情形,所有是partial)而特征值,也就是系统矩阵特征方程的根,和而系统矩阵是直接相关的。我们知道,在线性代数理论中,矩阵A的迹Trace(A)(简称Tr)是A的各个特征值之和,而矩阵A的行列式determinant(A)(简称det)为特征值的积。这里我们只考虑二阶系统。
2024-02-09 12:40:55 1289 1
原创 合并排序算法
3 比较复制数组中两个指针所指向的元素,选择相对小的元素放入到原始待排序数组中,并移动指针到下一位置。1申请空间,使其大小为两个已经排序序列之和,然后将待排序数组复制到该数组中。2设定两个指针,最初位置分别为两个已经排序序列的起始位置。5 将另一序列剩下的所有元素直接复制到原始数组末尾。4重复步骤3直到某一指针达到序列尾。
2024-02-04 12:03:24 590
原创 快速傅里叶变换 算法与实现
该部分关于离散傅里叶变换的讲解是我目前见过最好的。讲得十分清楚,严谨又不过分深入。快速傅里叶变换的算法原理。直觉和物理动机也很明确。对于工程应用完全足够。在书本的74-75页。
2024-02-03 15:26:04 265
原创 增广矩阵 分块矩阵
参考: http://blog.sina.com.cn/s/blog_5e16f1770100kjkt.html https://blog.csdn.net/weixin_43795395/article/details/100006545 https://blog.csdn.net/lanchunhui/article/details/50572852。
2024-01-28 13:45:33 175
原创 jupyter python笔记杂乱
问题产生的原因: 无法执行sess.run()的原因是tensorflow版本不同导致的,tensorflow版本2.0无法兼容版本1.0。确保tf’2能运行tf1的代码。notebok打开指定文件夹。
2024-01-27 22:07:47 320
Lebesgue’s remarkable theory of measure and integration with pro
2024-07-24
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人