MA模型简介及其相关性质

1.概述

1.1 定义

具有如下结构的模型称为q阶移动平均模型,简记为 M A ( q ) MA(q) MA(q)
{ x t = μ + ϵ t − θ 1 ϵ t − 1 − θ 2 ϵ t − 2 − . . . − θ q ϵ t − q ( 注意此处定义为“ − ”号,也可定义为“ + ”号 ) θ q ≠ 0 E ( ϵ t ) = 0 , V a r ( ϵ t ) = σ 2 , E ( ϵ t ϵ s ) = 0 , s ≠ t \begin{cases} x_t=\mu+\epsilon_t-\theta_{1}\epsilon_{t-1}-\theta_{2}\epsilon_{t-2}-...-\theta_{q}\epsilon_{t-q}(注意此处定义为“-”号,也可定义为“+”号)\\ \theta_q \not= 0\\ E(\epsilon_{t})=0,Var(\epsilon_t)=\sigma^2,E(\epsilon_t\epsilon_s)=0,s\not=t \end{cases} xt=μ+ϵtθ1ϵt1θ2ϵt2...θqϵtq(注意此处定义为号,也可定义为+)θq=0E(ϵt)=0Var(ϵt)=σ2,E(ϵtϵs)=0,s=t

1.2 限制条件

使用 M A ( q ) MA(q) MA(q)模型须满足两个限制条件:
θ q ≠ 0 \theta_q\not=0 θq=0,保证 M A ( q ) MA(q) MA(q)最高阶数为q
( ϵ t ) = 0 , V a r ( ϵ t ) = σ 2 , E ( ϵ t ϵ s ) = 0 , s ≠ t (\epsilon_{t})=0,Var(\epsilon_t)=\sigma^2,E(\epsilon_t\epsilon_s)=0,s\not=t (ϵt)=0Var(ϵt)=σ2,E(ϵtϵs)=0,s=t。保证随机扰动项 { ϵ t } \{\epsilon_t\} {ϵt}为零均值白噪声序列。

1.3 中心化 M A ( q ) MA(q) MA(q)模型

A R ( p ) AR(p) AR(p)模型类似,非中心化的 M A ( q ) MA(q) MA(q)模型可以转化为中心化 M A ( q ) MA(q) MA(q)模型,具体过程与 A R ( p ) AR(p) AR(p)模型转化过程相同,此处不再赘述。

1.4 简记

通过使用延迟算子,我们可以把 M A ( q ) MA(q) MA(q)模型简记为:
x t = Θ ( B ) ϵ t x_t=\Theta(B)\epsilon_t xt=Θ(B)ϵt
其中 Θ ( B ) = 1 − θ 1 B − θ 2 B 2 − . . . θ q B q \Theta(B)=1-\theta_1B-\theta_2B^2-...\theta_qB^q Θ(B)=1θ1Bθ2B2...θqBq

2. 统计性质

2.1 常数均值

q < ∞ q< \infty q<时, M A ( q ) MA(q) MA(q)模型具有常数均值:
E ( x t ) = E ( μ + ϵ t − θ 1 ϵ t − 1 − θ 2 ϵ t − 2 − . . . − θ q ϵ t − q ) = μ E(x_t)=E(\mu+\epsilon_t-\theta_1\epsilon_{t-1}-\theta_2\epsilon_{t-2}-...-\theta_q\epsilon_{t-q})=\mu E(xt)=E(μ+ϵtθ1ϵt1θ2ϵt2...θqϵtq)=μ

2.2 常数方差

V a r ( x t ) = V a r ( μ + ϵ t − θ 1 ϵ t − 1 − θ 2 ϵ t − 2 − . . . − θ q ϵ t − q ) = ( 1 + θ 1 2 + θ 2 2 + . . . + θ q 2 ) σ ϵ 2 Var(x_t)=Var(\mu+\epsilon_t-\theta_1\epsilon_{t-1}-\theta_2\epsilon_{t-2}-...-\theta_q\epsilon_{t-q})=(1+\theta_1^2+\theta_2^2+...+\theta_q^2)\sigma_{\epsilon}^2 Var(xt)=Var(μ+ϵtθ1ϵt1θ2ϵt2...θqϵtq)=(1+θ12+θ22+...+θq2)σϵ2

2.3 自协方差函数

γ k = E ( x t x t − k ) = E [ ( μ + ϵ t − θ 1 ϵ t − 1 − θ 2 ϵ t − 2 − . . . − θ q ϵ t − q ) ( μ + ϵ t − k − θ 1 ϵ t − k − 1 − θ 2 ϵ t − k − 2 − . . . − θ q ϵ t − k − q ) ] \gamma_k=E(x_tx_{t-k})=E[(\mu+\epsilon_t-\theta_1\epsilon_{t-1}-\theta_2\epsilon_{t-2}-...-\theta_q\epsilon_{t-q})(\mu+\epsilon_{t-k}-\theta_1\epsilon_{t-k-1}-\theta_2\epsilon_{t-k-2}-...-\theta_q\epsilon_{t-k-q})] γk=E(xtxtk)=E[(μ+ϵtθ1ϵt1θ2ϵt2...θqϵtq)(μ+ϵtkθ1ϵtk1θ2ϵtk2...θqϵtkq)]
由于 E ( x t x s ) = 0 , t ≠ s E(x_tx_s)=0,t \not= s E(xtxs)=0,t=s,所以可得到自协方差函数为:
γ k = { ( 1 + θ 1 2 + θ 2 2 + . . . + θ q 2 ) σ ϵ 2 , k = 0 ( − θ k + ∑ i = 1 q − k θ i θ k + i ) σ ϵ 2 , 1 ≤ k ≤ q 0 , k > q \gamma_k= \begin{cases} (1+\theta_1^2+\theta_2^2+...+\theta_q^2)\sigma_{\epsilon}^2\text ,k=0\\ (-\theta_k+\sum_{i=1}^{q-k}\theta_i\theta_{k+i})\sigma_{\epsilon}^2 \text ,1 \leq k \leq q\\ 0 \text,k>q \end{cases} γk= (1+θ12+θ22+...+θq2)σϵ2,k=0(θk+i=1qkθiθk+i)σϵ2,1kq0,k>q
从上式中我们可以得出, M A ( q ) MA(q) MA(q)模型的自协方差函数q阶截尾。

2.4 自相关系数

ρ k = γ k γ 0 \rho_k=\frac{\gamma_k}{\gamma_0} ρk=γ0γk
= { 1 , k = 0 ( − θ k + ∑ i = 1 q − k θ i θ k + i ) σ ϵ 2 1 + θ 1 2 + θ 2 2 + . . . + θ q 2 ) σ ϵ 2 , 1 ≤ k ≤ q 0 , k > q =\begin{cases} 1 ,k=0\\ \frac {(-\theta_k+\sum_{i=1}^{q-k}\theta_i\theta_{k+i})\sigma_{\epsilon}^2}{1+\theta_1^2+\theta_2^2+...+\theta_q^2)\sigma_{\epsilon}^2} \text ,1 \leq k \leq q\\ 0 \text,k>q \end{cases} = 1,k=01+θ12+θ22+...+θq2)σϵ2(θk+i=1qkθiθk+i)σϵ2,1kq0,k>q
同样可以得出, M A ( q ) MA(q) MA(q)模型的自相关系数q阶截尾。

3.可逆性

为什么要提出可逆性?这是因为当我们给定一个自相关系数时,对应着这个自相关系数的 M A MA MA模型不止有一个。为了保证一个给定的自相关系数只对应一个 M A MA MA模型,提出了可逆性这个概念。
例如:对于以下两个 M A ( 1 ) MA(1) MA(1)模型:
模型一: x t = ϵ t − θ ϵ t − 1 x_t=\epsilon_t-\theta\epsilon_{t-1} xt=ϵtθϵt1 模型2: x t = ϵ t − 1 θ ϵ t − 1 x_t=\epsilon_t-\frac{1}{\theta}\epsilon_{t-1} xt=ϵtθ1ϵt1
通过2.4自相关系数计算公式可得模型一的自相关系数为:
ρ k = { 1 , k = 0 − θ 1 1 + θ 1 2 , k = 1 0 , k > 1 \rho_k=\begin{cases} 1,k=0\\ \frac{-\theta_1}{1+\theta_1^2},k=1\\ 0,k>1\\ \end{cases} ρk= 1,k=01+θ12θ1,k=10,k>1
模型二的自相关系数为:
ρ k = { 1 , k = 0 − 1 θ 1 1 + 1 θ 1 2 = − θ 1 1 + θ 1 2 , k = 1 0 , k > 1 \rho_k=\begin{cases} 1,k=0\\ \frac{-\frac{1}{\theta_1}}{1+\frac{1}{\theta_1^2}}=\frac{-\theta_1}{1+\theta_1^2},k=1\\ 0,k>1\\ \end{cases} ρk= 1,k=01+θ121θ11=1+θ12θ1,k=10,k>1
可以看出两个 M A ( 1 ) MA(1) MA(1)模型都有相同的自相关系数,也就是给定了自相关系数时,我们可以得出两个不同的MA模型。

3.1 可逆性的定义

若一个MA模型能够表示成收敛的AR模型的形式,那么该MA模型是可逆的。

3.2 MA(q)的可逆性条件

MA(q)模型可表示为:
ϵ t = x t Θ ( B ) \epsilon_t=\frac{x_t}{\Theta(B)} ϵt=Θ(B)xt
其中 Θ ( B ) = 1 − θ 1 B − . . . − θ q B q \Theta(B)=1-\theta_1B-...-\theta_qB^q Θ(B)=1θ1B...θqBq为移动平均系数多项式。假定 1 λ 1 , 1 λ 2 , . . . , 1 λ q \frac{1}{\lambda_1},\frac{1}{\lambda_2},...,\frac{1}{\lambda_q} λ11,λ21,...,λq1是多项式的解,则 Θ ( B ) \Theta(B) Θ(B)可写为 Θ ( B ) = ∏ i = 1 q ( 1 − λ i B ) \Theta(B)=\prod_{i=1}^q(1-\lambda_iB) Θ(B)=i=1q(1λiB)
所以 M A ( q ) MA(q) MA(q)可写为:
ϵ t = x t ∏ i = 1 q ( 1 − λ i B ) \epsilon_t=\frac{x_t}{\prod_{i=1}^q(1-\lambda_iB)} ϵt=i=1q(1λiB)xt
上式收敛的条件是 ∣ λ i ∣ < 1 |\lambda_i|<1 λi<1,即多项式的根都在单位圆外, ∣ 1 λ i ∣ > 1 |\frac{1}{\lambda_i}|>1 λi1>1,这个条件就被称为MA(q)模型的可逆性条件。

3.3 逆函数递推公式

M A ( q ) MA(q) MA(q)模型满足可逆性条件,则其可以写成以下两种形式:
{ Θ ( B ) ϵ t = x t ϵ t = I ( B ) x t \begin{cases} \Theta(B)\epsilon_t=x_t\\ \epsilon_t=I(B)x_t\\ \end{cases} {Θ(B)ϵt=xtϵt=I(B)xt
上式可转化为:
I ( B ) Θ ( B ) x t = x t I(B)\Theta(B)x_t=x_t I(B)Θ(B)xt=xt
展开可得
( 1 + ∑ j = 0 n I j B j ) ( 1 − ∑ k = 0 q θ k B k ) x t = x t (1+\sum_{j=0}^nI_jB^j)(1-\sum_{k=0}^q\theta_kB^k)x_t=x_t (1+j=0nIjBj)(1k=0qθkBk)xt=xt
由待定系数法可得逆函数递推公式为:
{ I 0 = 1 I j = ∑ k = 1 j θ k ′ I j − k , j ≥ 1 \begin{cases} I_0=1\\ I_j=\sum_{k=1}^j\theta_k^{'}I_{j-k},j \geq 1 \end{cases} {I0=1Ij=k=1jθkIjk,j1
其中 θ k ′ = { 0 , k > q θ k , k ≤ q \theta_k^{'}= \begin{cases} 0,k > q\\ \theta_k,k \leq q\\ \end{cases} θk={0,k>qθk,kq

4.偏自相关系数拖尾性

    从第三节我们可以得出,一个可逆的 M A ( q ) MA(q) MA(q)模型可以表达为一个 A R ( ∞ ) AR(\infty) AR()的形式,而 A R ( p ) AR(p) AR(p)模型具有自相关系数p阶截尾的性质,所以可逆 M A ( q ) MA(q) MA(q)具有偏自相关系数拖尾性。
    一个可逆的 M A MA MA模型也会对应一个与之有相同自相关系数的不可逆 M A MA MA模型,由于其自相关系数是一样的,所以这个不可逆的 M A MA MA模型也具有偏自相关系数拖尾性。

  • 0
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值