voronoi图

一、基本概念
  Voronoi图,又叫泰森多边形或Dirichlet图,它是由一组由连接两邻点直线的垂直平分线组成的连续多边形组成。N个在平面上有区别的点,按照最邻近原则划分平面;每个点与它的最近邻区域相关联。Delaunay三角形是由与相邻Voronoi多边形共享一条边的相关点连接而成的三角形。Delaunay三角形的外接圆圆心是与三角形相关的Voronoi多边形的一个顶点。Voronoi三角形是Delaunay图的偶图;
  对于给定的初始点集P,有多种三角网剖分方式,其中Delaunay三角网具有以下特征:
  1、Delaunay三角网是唯一的;
  2、三角网的外边界构成了点集P的凸多边形“外壳”;
  3、没有任何点在三角形的外接圆内部,反之,如果一个三角网满足此条件,那么它就是Delaunay三角网。
  4、如果将三角网中的每个三角形的最小角进行升序排列,则Delaunay三角网的排列得到的数值最大,从这个意义上讲,Delaunay三角网是“最接近于规则化的“的三角网。
  Delaunay三角形网的特征又可以表达为以下特性:
  1、在Delaunay三角形网中任一三角形的外接圆范围内不会有其它点存在并与其通视,即空圆特性;
  2、在构网时,总是选择最邻近的点形成三角形并且不与约束线段相交;
  3、形成的三角形网总是具有最优的形状特征,任意两个相邻三角形形成的凸四边形的对角线如果可以互换的话,那么两个三角形6个内角中最小的角度不会变大;
  4、不论从区域何处开始构网,最终都将得到一致的结果,即构网具有唯一性。
  Delaunay三角形产生的基本准则:任何一个Delaunay三角形的外接圆的内部不能包含其他任何点[Delaunay 1934]。Lawson[1972]提出了最大化最小角原则,每两个相邻的三角形构成凸四边形的对角线,在相互交换后,六个内角的最小角不再增大。Lawson[1977提出了一个局部优化过程(LOP, local Optimization Procedure)方法。

 

二、Delaunay三角形网的通用算法-逐点插入算法

基于散点建立数字地面模型,常采用在d维的欧几里得空间Ed中构造Delaunay三角形网的通用算法—逐点插入算法,具体算法过程如下:
  1、遍历所有散点,求出点集的包容盒,得到作为点集凸壳的初始三角形并放入三角形链表。
  2、将点集中的散点依次插入,在三角形链表中找出其外接圆包含插入点的三角形(称为该点的影响三角形),删除影响三角形的公共边,将插入点同影响三角形的全部顶点连接起来,从而完成一个点在Delaunay三角形链表中的插入。
  3、根据优化准则对局部新形成的三角形进行优化(如互换对角线等)。将形成的三角形放入Delaunay三角形链表。
  4、循环执行上述第2步,直到所有散点插入完毕。
  上述基于散点的构网算法理论严密、唯一性好,网格满足空圆特性,较为理想。由其逐点插入的构网过程可知,在完成构网后,增加新点时,无需对所有的点进行重新构网,只需对新点的影响三角形范围进行局部联网,且局部联网的方法简单易行。同样,点的删除、移动也可快速动态地进行。但在实际应用当中,这种构网算法不易引入地面的地性线和特征线,当点集较大时构网速度也较慢,如果点集范围是非凸区域或者存在内环,则会产生非法三角形。
  为了克服基于散点构网算法的上述缺点,特别是为了提高算法效率,可以对网格中三角形的空圆特性稍加放松,亦即采用基于边的构网方法,其算法简述如下:
  1、根据已有的地性线和特征线,形成控制边链表。
  2、以控制边链表中一线段为基边,从点集中找出同该基边两端点距离和最小的点,以该点为顶点,以该基边为边,向外扩展一个三角形(仅满足空椭圆特性)并放入三角形链表。
  3、按照上述第2步,对控制边链表所有的线段进行循环,分别向外扩展。

  4、依次将新形成的三角形的边作为基边,形成新的控制边链表,按照上述第2步,对控制边链表所有的线段进行循环,再次向外扩展,直到所有三角形不能再向外扩展为止。

 

VoronoiDiagram

 

The partitioning of a plane with n points into convex polygons such that each polygon contains exactly one generating point and every point in a given polygon is closer to its generating point than to any other. A Voronoi diagram is sometimes also known as a Dirichlet tessellation. The cells are called Dirichlet regions, Thiessen polytopes, or Voronoi polygons.

Voronoi diagrams were considered as early at 1644 by René Descartes and were used by Dirichlet (1850) in the investigation of positive quadratic forms. They were also studied by Voronoi (1907), who extended the investigation of Voronoi diagrams to higher dimensions. They find widespread applications in areas such as computer graphics, epidemiology, geophysics, and meteorology. A particularly notable use of a Voronoi diagram was the analysis of the 1854 cholera epidemic in London, in which physician John Snow determined a strong correlation of deaths with proximity to a particular (and infected) water pump on Broad Street.

VoronoiDiagramPlots

The Mathematica command VoronoiDiagram[pts] in the Mathematica package ComputationalGeometry`) returns a data structure corresponding to the Voronoi diagram of a given set of points, and DiagramPlot[pts] gives a graphical illustration of the Voronoi diagram (left figure above). Voronoi diagrams can be even more easily visualized in Mathematica using graphics functions such as ListDensityPlot and ListPlot3D with the option setting InterpolationOrder -> 0 (right two figures).

DelaunayTriangulation

The Delaunay triangulation and Voronoi diagram in R^2 are dual to each other in the graph theoretical sense.

In Season 4 episode "Black Swan" of the television crime drama NUMB3RS, math genius Charles Eppes proposes performing atime series analysis of overlapping Dirichlet tessellations in an attempt to track the movements of a suspect.

SEE ALSO: Art Gallery TheoremComputational GeometryConvex HullDelaunay TriangulationHalfspace IntersectionMedial AxisTriangulationVoronoi Polygon

REFERENCES:

Aurenhammer, F. and Klein, R. "Voronoi Diagrams." Ch. 5 in Handbook of Computational Geometry (Ed. J.-R. Sack and J. Urrutia). Amsterdam, Netherlands: North-Holland, pp. 201-290, 2000.

Barber, C. B.; Dobkin, D. P.; and Huhdanpaa, H. T. "The Quickhull Algorithm for Convex Hulls." ACM Trans. Mathematical Software 22, 469-483, 1996.

de Berg, M.; van Kreveld, M.; Overmans, M.; and Schwarzkopf, O. "Voronoi Diagrams: The Post Office Problem." Ch. 7 in Computational Geometry: Algorithms and Applications, 2nd rev. ed. Berlin: Springer-Verlag, pp. 147-163, 2000.

Dirichlet, G. L. "Über die Reduktion der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen." J. reine angew. Math. 40, 209-227, 1850.

Eppstein, D. "Nearest Neighbors and Voronoi Diagrams." http://www.ics.uci.edu/~eppstein/junkyard/nn.html.

The Geometry Center. "Qhull." http://www.qhull.org/.

Guibas, L. and Stolfi, J. "Primitives for the Manipulation of General Subdivisions and the Computations of Voronoi Diagrams." ACM Trans. Graphics 4, 74-123, 1985.

Klee, V. "On the Complexity of d-Dimensional Voronoi Diagrams." Archiv. Math. 34, 75-80, 1980.

Okabe, A.; Boots, B.; and Sugihara, K. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd ed. New York: Wiley, 2000.

Preparata, F. R. and Shamos, M. I. Computational Geometry: An Introduction. New York: Springer-Verlag, 1985.

Skiena, S. S. "Voronoi Diagrams." §8.6.4 in The Algorithm Design Manual. New York: Springer-Verlag, pp. 358-360, 1997.

Snow, J. On the Mode of Communication of Cholera. London: John Churchill, 1855. http://www.ph.ucla.edu/epi/snow/snowbook.html.

Voronoi, G. "Nouvelles applications des paramètres continus à la théorie des formes quadratiques." J. reine angew. Math. 133, 97-178, 1907.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值