电路分析里的高等数学

本文未经允许,不得转载

电路分析里的高等数学

一元二次方程:

一元指的是只有一个未知说,二次指的是未知数的最高次是二次。总结下来的形式就是: a x 2 + b x + c = 0 ax^{2}+bx+c=0 ax2+bx+c=0。该方程的解是: x = − b ± b 2 − 4 a c 2 a x=\frac{-b±\sqrt{b^2-4ac}}{2a} x=2ab±b24ac
由上面的公式可以看到,该方程是有两个根,但是当 b 2 − 4 a c b^2-4ac b24ac等于0时,前面的±号也就没了意义,此时实际上只有一个跟,当 b 2 − 4 a c b^2-4ac b24ac小于0时,会发生什么呢?这是要引入复数跟虚数的概念(下面的小标题)。我们看到,当 b 2 − 4 a c b^2-4ac b24ac小于0时会有两个复数解。

复数与虚数:

虚数 j 有一个特点: j 2 = − 1 j^2=-1 j2=1,复数就是实数与虚数的组合: z = a + b j z=a+bj z=a+bj。了解虚数及复数的概念对后面的论述有帮助。

二阶常系数微分方程:

二阶常系数微分方程的形式: y ′ ′ + p y ′ + q y = f ( x ) y^{''}+py^{'}+qy=f(x) y+py+qy=f(x)
f ( x ) = 0 f(x)=0 f(x)=0时,我们称该方程为二阶常系数齐次微分方程。下面解析一下二阶常系数微分方程的解法。
首先导出齐次微分方程 y ′ ′ + p y ′ + q y = 0 y^{''}+py^{'}+qy=0 y+py+qy=0的特征方程: r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0,也就是上面的一元二次方程。求出特征方程的跟即可得出微分方程的通解,要想得到解,还需要两个初始条件,例如: y ′ ( 0 ) = 5 y^{'}(0)=5 y(0)=5
y ( 0 ) = 6 y(0)=6 y(0)=6

方程 r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0的根方程 y ′ ′ + p y ′ + q y = 0 y^{''}+py^{'}+qy=0 y+py+qy=0 的通解
r 1 ≠ r 2 r_{1}≠r_{2} r1̸=r2 y = C 1 e r 1 ∗ x + C 2 e r 2 ∗ x y=C_{1}e^{r_{1}*x}+C_{2}e^{r_{2}*x} y=C1er1x+C2er2x
r 1 = r 2 = r r_{1}=r_{2}=r r1=r2=r y = ( C 1 + C 2 x ) e r ∗ x y=(C_{1}+C_{2}x)e^{r*x} y=(C1+C2x)erx
一对共轭副根 r 1 = a + b j r_{1}=a+bj r1=a+bj r 2 = a − b j r_{2}=a-bj r2=abj y = e a ∗ x ( C 1 c o s b x + C 2 s i n b x ) y=e^{a*x}(C_{1}cosbx+C_{2}sinbx) y=eax(C1cosbx+C2sinbx)

举例假如有方程: y ′ ′ − 5 y ′ + 6 y = 0 y^{''}-5y^{'}+6y=0 y5y+6y=0 特征方程: r 2 − 5 r + 6 = 0 r^2-5r+6=0 r25r+6=0解得: r 1 = 2 r_{1}=2 r1=2 r 2 = 3 r_{2}=3 r2=3那么微分方程的通解就是: y = C 1 e 2 ∗ x + C 2 e 3 ∗ x y=C_{1}e^{2*x}+C_{2}e^{3*x} y=C1e2x+C2e3x
如果此时要求出解,换需要知道y(0)的值以及y’(0)的值。
假设:
y ( 0 ) = 3 y(0)=3 y(0)=3 y ′ ( 0 ) = 8 y'(0)=8 y(0)=8
则:C1=1,C2=2。解就是:
y = e 2 ∗ x + 2 e 3 ∗ x y=e^{2*x}+2e^{3*x} y=e2x+2e3x

电路中的应用

我们先来看一下《电路》第5版教材里的一个例题:
在这里插入图片描述
在这里插入图片描述
这个题的解其实就用到了微分方程的知识:
上面电路的数学模型推导如下:
在这里插入图片描述

在这里插入图片描述

怎么样?上面的方程是不是很熟悉,按理说这个方程属于非齐次方程,但是要求其解,还得先求其对应齐次方程的特征方程: r 2 + 200 r + 20000 = 0 r^2+200r+20000=0 r2+200r+20000=0
求得解为: r 1 = − 100 + 100 j r_{1}=-100+100j r1=100+100j r 2 = − 100 − 100 j r_{2}=-100-100j r2=100100j
对应微分方程的通解为: i ( t ) = e − 100 ∗ t ( C 1 c o s 100 t + C 2 s i n 100 t ) i_{(t)}=e^{-100*t}(C_{1}cos100t+C_{2}sin100t) i(t)=e100t(C1cos100t+C2sin100t)
特解要看0是不是特征方程的根,上面的例子明显不是,那么其特解:
i ( t ) = A i_{(t)}=A i(t)=A
y = A y=A y=A带入微分方程:
在这里插入图片描述
得:20000A=20000。A=1
那么特解为: i ( t ) = 1 i_{(t)}=1 i(t)=1
非齐次微分方程的解等于特解加对应齐次方程的解: i ( t ) = e − 100 ∗ t ( C 1 c o s 100 t + C 2 s i n 100 t ) + 1 i_{(t)}=e^{-100*t}(C_{1}cos100t+C_{2}sin100t)+1 i(t)=e100t(C1cos100t+C2sin100t)+1
将初始条件: i ( 0 ) = 2 i_{(0)}=2 i(0)=2 i ( 0 ) ′ = u c ( 0 ) = 0 i'_{(0)}=u_{c}(0)=0 i(0)=uc(0)=0
带入解得: C 1 = 1 C_1=1 C1=1 C 2 = 1 C_2=1 C2=1
最后得出解:
i ( t ) = e − 100 ∗ t ( c o s 100 t + s i n 100 t ) + 1 i_{(t)}=e^{-100*t}(cos100t+sin100t)+1 i(t)=e100t(cos100t+sin100t)+1

参考文献:《电路》第5版 原著:邱关源 修订:罗先觉

北京邮电大学高等数学A是该校理工类专业学生必修的一门数学课程。该课程主要涵盖了微积分的基础内容,包括极限与连续、导数与微分、函数与极值、不定积分与定积分等。通过学习这门课程,学生将深入理解微积分的概念和原理,掌握一些基本的数学方法和技巧,为进一步学习高级数学和应用数学课程打下坚实的基础。 首先,学习高等数学A可以帮助学生培养数学思维能力和问题解决能力。在课程,学生需要分析和解决各种数学问题,培养逻辑思维和推理能力。这种思维方式可以培养学生的创新意识和解决实际问题的能力。 其次,高等数学A也是许多工科专业必不可少的一门数学基础课程。它为工科学生提供了解决实际问题的数学工具和方法。例如,在电子、通信等专业,经常会用到微分方程来描述电路的电流和电压关系,这就需要通过高等数学A的导数和微分的知识来进行分析和求解。 此外,高等数学A还为学生的学术发展和进一步学习开设了硬件。它为学生理解和学习更高级数学课程如概率与统计、线性代数、数值计算等打下了坚实的基础。 总之,北京邮电大学高等数学A是该校理工类专业学生必修的一门重要课程。通过学习这门课程,学生可以培养数学思维能力,掌握基本的数学方法和技巧,并为未来的学术发展和进一步学习奠定基础。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值