《TensorFlow 2.0深度学习算法实战教材》学习笔记(六、反向传播算法)

反向传播算法和梯度下降算法是神经网络的核心算法。

导数与梯度

导数本身是标量,没有方向,但是导数表征了函数值在某个方向Δ𝒙的变化率。在这些任意Δ𝒙方向中,沿着坐标轴的几个方向比较特殊,此时的导数也叫做偏导数(Partial Derivative)。对于一元函数,导数记为𝑑𝑦/𝑑𝑥;对于多元函数的偏导数,记为𝜕𝑦/𝜕𝑥1,𝜕𝑦/𝜕𝑥2, …等。偏导数是导数的特例,也没有方向。

梯度下降算法:𝜃′ = 𝜃 − 𝜂 ∗ ∇ℒ

梯度上升算法:𝜃′ = 𝜃 + 𝜂 ∗ ∇ℒ

其中向量(∂ℒ/∂𝜃1,∂ℒ/∂𝜃2,∂ℒ/∂𝜃3, …∂ℒ/∂𝜃𝑛)叫做函数的梯度(Gradient),它由所有偏导数组成,表征方向,梯度的方向表示函数值上升最快的方向,梯度的反向表示函数值下降最快的方向。

导数常见性质

基本函数的导数

在这里插入图片描述

常用导数性质

在这里插入图片描述

激活函数导数

Sigmoid 函数导数

Sigmoid 函数表达式:
在这里插入图片描述
Sigmoid 函数的导数表达式:
在这里插入图片描述
Sigmoid 函数的导数曲线如图 7.2 所示
在这里插入图片描述

ReLU 函数导数

ReLU 函数的表达式:𝑅𝑒𝐿𝑈(𝑥) ≔ 𝑚𝑎𝑥(0, 𝑥)

ReLU 函数的导数表达式:
在这里插入图片描述
ReLU 函数的导数曲线如图 7.3 所示
在这里插入图片描述

LeakyReLU 函数导数

LeakyReLU 函数的表达式:
在这里插入图片描述
LeakyReLU 函数的导数表达式:
在这里插入图片描述
LeakyReLU 函数的导数曲线如图 7.4所示
在这里插入图片描述

Tanh 函数梯度

tanh 函数的表达式:
在这里插入图片描述
tanh 函数的导数表达式:
在这里插入图片描述
tanh函数的导数曲线如图 7.5所示
在这里插入图片描述

损失函数梯度

均方差函数梯度

均方差损失函数表达式为:
在这里插入图片描述

均方差的导数可以推导为:
在这里插入图片描述

交叉熵函数梯度

Softmax梯度

Softmax 函数的表达式:
在这里插入图片描述
Softmax 函数的梯度推导稍复杂,但是最终的结果还是很简洁的:
在这里插入图片描述

交叉熵梯度

交叉熵损失函数的表达式:
在这里插入图片描述
交叉熵损失 函数的梯度:
在这里插入图片描述
在这里插入图片描述

全连接层梯度

单个神经元梯度

对于采用Sigmoid 激活函数的神经元模型,它的数学模型可以写为
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

全连接层梯度

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

链式法则

在这里插入图片描述

反向传播算法

在这里插入图片描述
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汀桦坞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值