最新Windows配置安装mmcv与mmsegmentation,以及mmsegmentation的验证

前言

越来越多的计算机视觉任务论文代码都在使用mmcv和mmseg库,b站、csdn很多都是之前的安装教程,比如需要下载visual stdio安装c++编译器,mmcv-full,或者就是Linux系统下的安装,这篇文章将提供最新的window系统下的mmcv与mmsegmentation的详细安装配置,只需要跟着步骤来即可

1、创建环境

在配置环境之前要确保是n卡且下载好了cuda,这个cuda版本可以是最新的,能向下兼容,我的主机cuda版本为12.8,官方文档写的是11.8依旧能运行。

紧接着就是创建虚拟环境了,直接在Anaconda powershell prompt创建就行了

虚拟环境名为mmseg,python版本选择3.8,比较稳定

conda create -n mmseg python=3.8

2、安装torch

当环境之后,紧接着就是最重要的一步,pytorch版本和mmcv版本问题,也是很多地方没说的,进入mmcv的官方文档Installation — mmcv 2.2.0 文档https://mmcv.readthedocs.io/zh-cn/latest/get_started/installation.html往下翻,找到配置信息

这里我用的是cuda 11.8,torch 2.0.x,mmcv 2.0.0选择这一项,因为mmcv高版本2.1.0,2.2.0会存在兼容性问题,因此这里选择低版本2.0.0

然后去pytorch官网,找到之前版本,链接如下这里Previous PyTorch Versions | PyTorchhttps://pytorch.org/get-started/previous-versions/ 然后找到v2.0.0的版本

直接复制下方命令即可

# CUDA 11.8
conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 pytorch-cuda=11.8 -c pytorch -c nvidia

3、安装mmcv

复制在第二步里的pip命令下载mmcv

复制如下命令 

pip install mmcv==2.0.0 -f https://download.openmmlab.com/mmcv/dist/cu118/torch2.0/index.html

 在mmseg环境里安装mmcv

等待安装完Successfully就行了

4、安装mmseg

参考官方文档的步骤安装没什么问题

欢迎来到 MMSegmentation 的文档! — MMSegmentation 1.2.2 文档https://mmsegmentation.readthedocs.io/zh-cn/latest/index.html官方文档里提供了2种方法,这里我讲第2种安装到虚拟环境里

首先安装openmin,这一步为后续安装文件做准备

pip install -U openmim

直接在mmseg虚拟环境里pip安装mmsegmentation,使用命令

pip install "mmsegmentation>=1.0.0"

在Anaconda命令行里cd进入指定的项目文件夹,例如“E:\Deep_learning”

下载测试的模型以及模型权重到项目中,运行下方代码,即可将下载到该项目文件夹

mim download mmsegmentation --config pspnet_r50-d8_4xb2-40k_cityscapes-512x1024 --dest .

之后进入pycharm,将虚拟环境配置导入好,一定要看是否有mmcv以及mmsegmentation,版本号也要检查一下

5、创建demo验证

在本地创建一个demo.py文件,复制下方测试代码

from mmseg.apis import inference_model, init_model, show_result_pyplot
import mmcv

config_file = 'pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py'
checkpoint_file = 'pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth'

# 根据配置文件和模型文件建立模型
model = init_model(config_file, checkpoint_file, device='cuda:0')

# 在单张图像上测试并可视化
img = 'demo.png'  # or img = mmcv.imread(img), 这样仅需下载一次
result = inference_model(model, img)
# 在新的窗口可视化结果
show_result_pyplot(model, img, result, show=True)
# 或者将可视化结果保存到图像文件夹中
# 您可以修改分割 map 的透明度 (0, 1].
show_result_pyplot(model, img, result, show=True, out_file='result.jpg', opacity=0.5)
# 在一段视频上测试并可视化分割结果
video = mmcv.VideoReader('video.mp4')
for frame in video:
   result = inference_model(model, frame)
   show_result_pyplot(model, frame, result, wait_time=1)

这里还有个问题就是demo.png图片要去GitHub官网上复制下来,并粘贴到文件夹里,图片的链接如下

https://github.com/open-mmlab/mmsegmentation/blob/main/demo/demo.pnghttps://github.com/open-mmlab/mmsegmentation/blob/main/demo/demo.png

然后运行程序 

 5.1 运行报错

此时运行如果出现报错:DLL load failed while importing _imaging: 找不到指定的模块

 在anaconda虚拟环境命令行里将pillow卸载

pip uninstall Pillow

然后再安装

pip install Pillow

 此时运行如果出现报错:ModuleNotFoundError: No module named 'ftfy'

直接在命令行里安装ftfy即可 

pip install ftfy

最后再运行即可,下方的warning忽略不影响结果,界面右边实现了result结果,测试成功!

以上就是关于Windows下mmcv以及mmseg的安装教程

<think>好的,用户想在仅支持CPU的环境中安装mmcv库。我需要先回忆一下相关的安装步骤和注意事项。根据之前提供的引用内容,特别是引用[3]和[4],安装mmcv-full在CPU环境下可能需要特定的命令。 首先,用户提到的是CPU环境,所以需要确认是否安装的是mmcv-full的CPU版本。根据引用[3],安装mmcv-full时必须指定对应的Torch版本和CPU的链接。例如,使用pip安装命令,并指向包含cpu和torch版本的URL。例如,pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.6.0/index.html。这里需要注意Torch的版本是否用户环境中的一致,否则可能导致兼容性问题。 另外,引用[4]也提到了类似的安装命令,但针对的是CUDA环境。不过用户是CPU环境,所以需要替换链接中的cu113为cpu,并调整Torch版本。比如,如果用户安装的是Torch 1.12,那么链接应该是https://download.openmmlab.com/mmcv/dist/cpu/torch1.12/index.html。 然后,用户可能需要先安装PyTorch的CPU版本。引用[3]中提到,如果在清华源找不到CPU版本的包,可以直接从Anaconda官网下载cpuonly包,并手动安装。这可能涉及到conda install cpuonly或者通过pip安装PyTorch的CPU版本,比如pip install torch==1.12.0+cpu -f https://download.pytorch.org/whl/torch_stable.html。 安装完成后,需要验证PyTorch是否正确安装,是否在CPU上运行。可以运行Python代码检查torch.cuda.is_available()是否为False,以及张量是否在CPU上。接下来再安装mmcv-full,确保使用正确的URL。安装完成后,按照引用[2]的建议,运行import mmcv并打印版本号来验证是否成功。 最后,可能需要处理依赖问题,比如安装numpy等包,如引用[3]所述。如果安装过程中出现错误,需要检查Torch版本和mmcv-full版本的兼容性,以及是否正确指向了CPU的下载链接。如果有必要,用户也可以考虑安装mmcv-lite,即轻量版,但功能可能受限,需根据需求选择。</think>在仅支持CPU的环境中安装MMCV库,需按照以下步骤操作: ### 1. 确认系统环境 - 确保Python版本符合要求(通常需≥3.6) - 已安装CPU版本的PyTorch,可通过以下命令验证: ```python import torch print(torch.__version__) # 应输出如1.12.0 print(torch.cuda.is_available()) # 必须返回False ``` ### 2. 安装CPU版PyTorch 若未安装PyTorch,使用以下命令安装(以1.12版本为例): ```bash pip install torch==1.12.0+cpu -f https://download.pytorch.org/whl/torch_stable.html ``` ### 3. 安装MMCV-full 通过指定CPU编译版本和对应PyTorch版本的URL安装: ```bash pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.12.0/index.html ``` 注意:URL中的`torch1.12.0`需实际安装PyTorch版本严格匹配[^3][^4]。 ### 4. 验证安装 ```python import mmcv print(mmcv.__version__) # 成功输出版本号即表示安装成功[^2] ``` ### 5. 可选安装MMCV-lite 若不需要完整功能,可安装轻量版: ```bash pip install mmcv-lite ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值