造成 loss=inf的原因之一:data underflow
最近在测试Giou的测试效果,在mobilenetssd上面测试Giou loss相对smoothl1的效果;
改完后训练出现loss=inf
原因: 在使用log函数时出现 data underflow
解决方法:增加一个bias
原代码
# match wh / prior wh
g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:]
g_wh = torch.log(g_wh) / variances[1]
# return target for smooth_l1_loss
return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4]
修改后
eps = 1e-5
# match wh / prior wh
g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:]
g_wh = torch.log(g_wh + eps) / variances[1]
# return target for smooth_l1_loss
return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4]
造成训练过程中loss=Nan
一、log函数与exp也是产生NaN的大户
当网络训练到达一定程度的时候,模型对分类的判断可能会产生0这样的数值,log(0)本身是没有问题的,-inf可以安全的参与绝大部分运算,除了(-inf * 0),会产生NaN。NaN的话,一旦参与reduce运算会让结果完蛋的… 因此呢,如果有
y_truth * log(y_predict)
# when y_truth[i] is 0, it is likely that y_predict[i] would be 0
这样的表达式,要考虑对log中的变量进行clip. 比如
safe_log = tf.clip_by_value(some_tensor, 1e-10, 1e100)
bin_tensor * tf.log(safe_log)
二、数据问题
这也是常见的原因;脏数据要筛选掉,手动筛选或者半自动,半自动就是把batchsize设为1,把数据增强关掉,并打印出问题数据;