算法
文章平均质量分 52
介绍各种算法的知识及在实际问题中的应用
William.csj
华中科技大学在读博士研究生。
研究方向:多目标跟踪,单目标跟踪。
本科经历:获得国家奖学金等十余项奖学金,参加数学竞赛、数学建模竞赛、ROBOCON机器人比赛、互联网+、挑战杯等,曾获数学竞赛全国一、二等奖、数学建模竞赛多次国家(际)一、二等奖、ROBOCON机器人两次全国二等奖(队长)、互联网+全国铜奖(省最佳创意奖)等十余项国家级奖项,曾在深圳科创学院智能驾驶中心担任视觉感知算法实习生。
展开
-
DETR——网络到底在学些什么?
DETR——网络到底在学些什么?原创 2023-12-28 20:21:07 · 353 阅读 · 0 评论 -
Transformer——Q、K、V详解
图书馆里有很多书(value),为了方便查找,我们给书做了编号(key)。当我们想要了解漫威这本书(query)的时候,我们就可以看看那些动漫、电影、甚至二战(美国队长)相关的书籍。转载 2023-12-27 14:21:15 · 2678 阅读 · 0 评论 -
Transformer——位置编码
想给模型一些位置信息,一个方案是在每个单词中添加一条关于其在句子中位置的信息。我们称之为“信息片段”,即位置编码。转载 2023-12-27 10:22:23 · 560 阅读 · 0 评论 -
算法——汉诺塔递归求解
算法——汉诺塔递归求解转载 2023-03-20 14:41:05 · 109 阅读 · 0 评论 -
扩展卡尔曼滤波算法——基本原理及举例(python实现radar数据滤波)
扩展卡尔曼滤波分为两大阶段:预测和更新。预测公式如下:x′=Fx+Bux^{\prime}=Fx+B u x′=Fx+Bu P′=FPFT+QP^{\prime}=F P F^{T}+QP′=FPFT+Q其中,x′x^{\prime}x′ 表示;FFF 表示;xxx 表示;BBB 表示;UUU 表示;P′P^{\prime}P′ 表示;PPP 表示;QQQ 表示。更新公式如下:K=P′HT(HP′HT+R)−1K=P^{\prime} H^{T}\left(H P^{\prime} H^{T原创 2022-06-01 18:02:14 · 7365 阅读 · 8 评论 -
卡尔曼滤波算法——基本原理及举例(python实现radar数据滤波)
卡尔曼滤波分为两大阶段:预测和更新。预测公式如下:x′=Fx+Bux^{\prime}=Fx+B u x′=Fx+Bu P′=FPFT+QP^{\prime}=F P F^{T}+QP′=FPFT+Q其中,x′x^{\prime}x′ 表示;FFF 表示;xxx 表示;BBB 表示;UUU 表示;P′P^{\prime}P′ 表示;PPP 表示;QQQ 表示。更新公式如下:K=P′HT(HP′HT+R)−1K=P^{\prime} H^{T}\left(H P^{\prime} H^{T}+原创 2022-06-01 17:38:52 · 5443 阅读 · 9 评论 -
SiamFC——pytorch代码分析
SiamFC代码分析(architecture、training、test)siamfc-pytorch代码讲解(二):train&siamfc转载 2022-03-15 18:25:26 · 391 阅读 · 0 评论 -
AI——专业名词
AI——专业名词1、侧端AI2、SOT3、MOT1、侧端AI又称:边缘计算AI通俗理解:在本地设备实现AI计算过程参考资料2、SOT中文名称:单目标追踪3、MOT中文名称:多目标追踪原创 2021-08-25 21:32:58 · 808 阅读 · 0 评论 -
解码斯坦福开源狗DogGo——电机旋转角度的设置及解读
以下分析基于这篇博客:解码斯坦福开源狗DogGo–附硬件清单、源码、图纸、论文 我选取其中的一幅图来分析 我以Y轴正方向为0度,逆时针为正。 考虑到红色上腿长度等于蓝色上腿长度,红色下腿长度等于蓝色下腿长度。利用该几何关系,我们可以知道虚线L一定是平分了红色上腿和蓝色上腿的夹角。所以我们很容易得到: 红色上腿角度为:∠θ - ∠γ 蓝色上腿角度为:∠θ + ∠γ...原创 2021-01-20 17:53:31 · 1026 阅读 · 3 评论 -
遗传算法——求解优化问题,参数分析(以求二维sphere最小值为例)
遗传算法求解优化问题前言“实践是检验整理的唯一标准”。下面是我通过课上听了项老师介绍的遗传算法的一些见解以及实践,分为以下内容:遗传算法的解读,遗传算法的验证,遗传算法的参数解读,遗传算法的程序源码。 目录1.遗传算法的解读 1.1参数编码 1.1.1二进制编码 1.1.2十进制编码 1.2初始化群体的设定 1.3适应度函数的设定 1.4遗传操作设计 1.4.1选择 1.4.2交叉 1.4.3变异 1.5控制参数设定 2.遗传算法的验证 2.1参数编码 2.2初始化群体的原创 2020-06-19 14:34:23 · 10379 阅读 · 4 评论 -
粒子群算法——求解优化问题,参数分析(以求二维sphere最小值为例)
粒子群算法求解优化问题前言“实践是检验整理的唯一标准”。下面是我通过课上听了项老师介绍的粒子群算法的一些见解以及实践,分为以下内容:粒子群算法的解读,粒子群算法的验证,粒子群算法的参数解读,粒子群算法的程序源码。 目录1.粒子群算法的解读 1.1预准备 1.1.1 十进制编码 1.1.2 初始化群体的设定 1.1.3 适应度函数的设定 1.2基本思想 1.3基本原理 1.4算法定义 1.5基本的PSO算法 1.6 算法流程图 1.7 优缺点 2.粒子群算法的验证 2.1编码原创 2020-06-19 14:35:19 · 11783 阅读 · 2 评论 -
Pid算法——pid 及参数调试方法
所谓PID指的是Proportion-Integral-Differential。翻译成中文是比例-积分-微分。记住两句话:1、PID是经典控制(使用年代久远) 2、PID是误差控制()对直流电机速度进行定速控制:1、L293作为电机驱动;2、光电传感器-作为输出反馈;3、PWM做为输入控制。 PID怎么对误差控制,听我细细道来:所谓“误差”就是命令与输出的差值。比如你希望控制转速为4转/s(PWM波占空比=80%),而事实上控制转速只有3.5转/s,则误差: e=0.5转,如果实际转速为4.5转载 2020-07-15 21:36:11 · 8334 阅读 · 0 评论