Pytorch环境配置——cuda、、cudnn、torch、torchvision对应版本(最全)及安装方法

54 篇文章 1 订阅
39 篇文章 1 订阅

一、查询可支持的最高cuda版本

在安装显卡驱动的前提下(显卡驱动安装方法),输入:

nvidia-smi

在这里插入图片描述
可以看到该电脑可以支持的cuda版本最高是11.4,驱动是向下兼容的,所以cuda版本小于等于11.4的都可以安装上。
(如果想安装的cuda版本不在可支持的cuda版本内,则可以考虑升级电脑的内核,从而实现对cuda高版本的安装。具体cuda版本及需要的内核详见:CUDA Toolkit and Corresponding Driver Versions

二、查看cuda、cudnn、pytorch、torchvision对应版本

表1 cuda与cudnn对应的版本
cudacudnn
11.58.3.3、8.3.2、8.3.1、8.3.0、8.2.1、8.2.0
11.48.2.4、8.2.2、8.2.1、8.2.0
11.38.2.1、8.2.0
11.28.2.1、8.2.0、8.1.1、8.1.0
11.18.2.1、8.2.0、8.1.1、8.1.0、8.0.5、8.0.5、8.0.4
11.08.2.1、8.2.0、8.1.1、8.1.0、8.0.5、8.0.4、8.0.3、8.0.2、8.0.1
10.28.3.3、8.3.2、8.3.1、8.3.0、8.2.4、8.2.2、8.2.1、8.2.0、8.1.1、8.1.0、8.0.5、8.0.4、8.0.3、8.0.2、8.0.1、7.6.5
10.18.0.5、8.0.4、8.0.3、8.0.2、7.6.5、7.6.4、7.6.3、7.6.2、7.6.1、7.6.0、7.5.1、7.5.0
10.07.6.5、7.6.4、7.6.3、7.6.2、7.6.1、7.6.0、7.5.1、7.5.0、7.4.2、7.4.1、7.3.1、7.3.0
9.27.6.5、7.6.4、7.6.3、7.6.2、7.6.1、7.6.0、7.5.1、7.5.0、7.4.2、7.4.1、7.3.1、7.2.1、7.1.4、7.1.2
9.17.1.3、7.1.2、7.0.5
9.07.6.5、7.6.4、7.6.3、7.6.2、7.6.1、7.6.0、7.5.1、7.5.0、7.4.2、7.4.1、7.3.1、7.3.0、7.1.4、7.1.3、7.1.2、7.0.5、7.0.4
8.07.1.4、7.1.3、7.0.5、6.0、5.1、5
7.55.1、5
7.04、3
6.52、1

cudnn是用于深度神经网络的GPU加速库,cuda是平台,两者都需要安装才可以调用GPU加速。
cuda与cudnn的关系详解
最新 【NVIDIA官网】cuda与cudnn对应的版本

CUDAToolkit是NVIDIA的CUDA工具包,包含了CUDA的全部工具。CUDAToolkit与cuda版本相同

表2 cuda、CUDAToolkit与pytorch对应的版本
cudaCUDAToolkitpytorch
11.311.31.10.1、1.10.0、1.9.1、1.9.0、1.8.1
11.111.11.10.0、1.9.1、1.9.0、1.8.1、1.8.0
11.011.01.7.1、1.7.0
10.210.21.10.1、1.10.0、1.9.1、1.9.0、1.8.1、1.8.0、1.7.1、1.7.0、1.6.0、1.5.1、1.5.0
10.110.11.7.1、1.7.0、1.6.0、1.5.1、1.5.0、1.4.0
10.010.01.2.0、1.1.0、1.0.1、1.0.0
9.29.21.7.1、1.7.0、1.6.0、1.5.1、1.5.0、1.4.0、1.2.0
9.09.01.1.0、1.0.1、1.0.0
8.08.01.0.0

最新 【pytorch官网】CUDAToolkit与pytorch对应的版本

表3 pytorch与torchvision对应的版本
pytorchtorchvision
1.10.10.11.2
1.10.00.11.0
1.9.10.10.1
1.9.00.10.0
1.8.10.9.1
1.8.00.9.0
1.7.10.8.2
1.7.00.8.0
1.6.00.7.0
1.5.10.6.1
1.5.00.6.0
1.4.00.5.0
1.2.00.4.0
1.1.00.3.0
1.0.10.2.2
1.0.00.2.1

最新 【pytorch官网】pytorch与torchvision对应的版本

三、安装

3.1 Windows上安装

  1. Windows——安装cuda10.2和cudnn7.6.5(两者搭配稳定可靠)
  2. PyTorch——基于Windows环境下的安装教程

3.2 Ubuntu上安装

  1. Ubuntu 18.04——Anaconda + CUDA + Cudnn + Pytorch + TensorRT 深度学习环境配置

四、测试是否安装成功

终端输入:

python
import torch
torch.cuda.is_available()

如果输出为True,则代表安装成功。

五、小贴士

  1. cuda、cudnn需要去官网下载后按照教程安装,这样安装成功几率大,直接命令行安装失败风险很大。
  2. 安装指定版本的pytorch、torchvision、cudatoolkit,在输入安装指令的那一步,直接加上版本号即可。举例:conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=9.0 -c pytorch
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

William.csj

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值