Pytorch环境配置——cuda、、cudnn、torch、torchvision对应版本(最全)及安装方法

一、查询可支持的最高cuda版本

在安装显卡驱动的前提下(显卡驱动安装方法),输入:

nvidia-smi

在这里插入图片描述
可以看到该电脑可以支持的cuda版本最高是11.4,驱动是向下兼容的,所以cuda版本小于等于11.4的都可以安装上。
(如果想安装的cuda版本不在可支持的cuda版本内,则可以考虑升级电脑的内核,从而实现对cuda高版本的安装。具体cuda版本及需要的内核详见:CUDA Toolkit and Corresponding Driver Versions

二、查看cuda、cudnn、pytorch、torchvision对应版本

表1 cuda与cudnn对应的版本
cudacudnn
11.58.3.3、8.3.2、8.3.1、8.3.0、8.2.1、8.2.0
11.48.2.4、8.2.2、8.2.1、8.2.0
11.38.2.1、8.2.0
11.28.2.1、8.2.0、8.1.1、8.1.0
11.18.2.1、8.2.0、8.1.1、8.1.0、8.0.5、8.0.5、8.0.4
11.08.2.1、8.2.0、8.1.1、8.1.0、8.0.5、8.0.4、8.0.3、8.0.2、8.0.1
10.28.3.3、8.3.2、8.3.1、8.3.0、8.2.4、8.2.2、8.2.1、8.2.0、8.1.1、8.1.0、8.0.5、8.0.4、8.0.3、8.0.2、8.0.1、7.6.5
10.18.0.5、8.0.4、8.0.3、8.0.2、7.6.5、7.6.4、7.6.3、7.6.2、7.6.1、7.6.0、7.5.1、7.5.0
10.07.6.5、7.6.4、7.6.3、7.6.2、7.6.1、7.6.0、7.5.1、7.5.0、7.4.2、7.4.1、7.3.1、7.3.0
9.27.6.5、7.6.4、7.6.3、7.6.2、7.6.1、7.6.0、7.5.1、7.5.0、7.4.2、7.4.1、7.3.1、7.2.1、7.1.4、7.1.2
9.17.1.3、7.1.2、7.0.5
9.07.6.5、7.6.4、7.6.3、7.6.2、7.6.1、7.6.0、7.5.1、7.5.0、7.4.2、7.4.1、7.3.1、7.3.0、7.1.4、7.1.3、7.1.2、7.0.5、7.0.4
8.07.1.4、7.1.3、7.0.5、6.0、5.1、5
7.55.1、5
7.04、3
6.52、1

cudnn是用于深度神经网络的GPU加速库,cuda是平台,两者都需要安装才可以调用GPU加速。
cuda与cudnn的关系详解
最新 【NVIDIA官网】cuda与cudnn对应的版本

CUDAToolkit是NVIDIA的CUDA工具包,包含了CUDA的全部工具。CUDAToolkit与cuda版本相同

表2 cuda、CUDAToolkit与pytorch对应的版本
cudaCUDAToolkitpytorch
11.311.31.10.1、1.10.0、1.9.1、1.9.0、1.8.1
11.111.11.10.0、1.9.1、1.9.0、1.8.1、1.8.0
11.011.01.7.1、1.7.0
10.210.21.10.1、1.10.0、1.9.1、1.9.0、1.8.1、1.8.0、1.7.1、1.7.0、1.6.0、1.5.1、1.5.0
10.110.11.7.1、1.7.0、1.6.0、1.5.1、1.5.0、1.4.0
10.010.01.2.0、1.1.0、1.0.1、1.0.0
9.29.21.7.1、1.7.0、1.6.0、1.5.1、1.5.0、1.4.0、1.2.0
9.09.01.1.0、1.0.1、1.0.0
8.08.01.0.0

最新 【pytorch官网】CUDAToolkit与pytorch对应的版本

表3 pytorch与torchvision对应的版本
pytorchtorchvision
1.10.10.11.2
1.10.00.11.0
1.9.10.10.1
1.9.00.10.0
1.8.10.9.1
1.8.00.9.0
1.7.10.8.2
1.7.00.8.0
1.6.00.7.0
1.5.10.6.1
1.5.00.6.0
1.4.00.5.0
1.2.00.4.0
1.1.00.3.0
1.0.10.2.2
1.0.00.2.1

最新 【pytorch官网】pytorch与torchvision对应的版本

三、安装

3.1 Windows上安装

  1. Windows——安装cuda10.2和cudnn7.6.5(两者搭配稳定可靠)
  2. PyTorch——基于Windows环境下的安装教程

3.2 Ubuntu上安装

  1. Ubuntu 18.04——Anaconda + CUDA + Cudnn + Pytorch + TensorRT 深度学习环境配置

四、测试是否安装成功

终端输入:

python
import torch
torch.cuda.is_available()

如果输出为True,则代表安装成功。

五、小贴士

  1. cuda、cudnn需要去官网下载后按照教程安装,这样安装成功几率大,直接命令行安装失败风险很大。
  2. 安装指定版本的pytorch、torchvision、cudatoolkit,在输入安装指令的那一步,直接加上版本号即可。举例:conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=9.0 -c pytorch
### CUDA 12.2 安装指南 #### 确认硬件兼容性和驱动版本安装 CUDA 之前,确认计算机的 GPU 支持所需的 CUDA 版本非常重要。对于 CUDA 12.2对应的显卡驱动应支持此版本。如果当前使用的显卡驱动不匹配,则需更新至合适的版本[^1]。 #### 下载 CUDA Toolkit 访问[NVIDIA 开发者网站](https://developer.nvidia.com/cuda-downloads),选择适用于操作系统的 CUDA 12.2 版本来下载。确保按照个人的操作系统环境(Linux、Windows 或 macOS)以及架构来挑选正确的安装包[^3]。 #### 执行安装过程 启动安装程序并遵循向导提示完成基本设置。通常情况下,默认选项即可满足大多数需求;但对于特定应用可能需要自定义配置。注意,在 Linux 上可以选择运行.run 文件来进行本地安装。 #### 设置环境变量 为了使编译器和其他工具能够找到 CUDA 库的位置,建议修改 `.bashrc` 或其他 shell 配置文件以永久性地加入如下两行: ```bash export PATH=/usr/local/cuda-12.2/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda-12.2/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} ``` 这一步骤使得无需每次重启终端都手动加载路径信息[^2]。 #### 测试安装成功与否 通过编写简单的测试代码验证 CUDA 是否正常工作。可以尝试编译并执行下面这段经典的 “Hello World” 示例: ```cpp #include <stdio.h> __global__ void helloFromGPU(void) { printf("Hello World from GPU!\n"); } int main() { printf("Hello World from CPU\n"); helloFromGPU<<<1, 10>>>(); cudaDeviceSynchronize(); } ``` 保存上述 C++ 代码片段为 `hello_cuda.cu` 后,在命令行输入以下指令进行编译与运行: ```bash nvcc -o hello_cuda hello_cuda.cu ./hello_cuda ``` 若一切顺利,应该能看到来自CPU和GPU端打印的消息输出。 #### 安装 TensorRT (可选) 如果有计划利用 NVIDIA 的深度学习推理引擎——TensorRT 来加速模型部署的话,可以根据官方文档中的指导完成额外组件的集成[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

William.csj

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值