基于Tensorflow的机器学习(6) -- 卷积神经网络

本篇博客将基于tensorflow的estimator以及MNIST实现LeNet。具体实现步骤如下:

导入必要内容

from __future__ import division, print_function, absolute_import

# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('/tmp/data/', one_hot=False)
# Why we set the one-hot to be false, what if we do not do it?

import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np

上述代码值得注意的是使用到了python的内置函数__future__, 其是保证python2.7可以使用3.x相关功能的一种有效的实现手段.

变量配置

# Training parameters
learning_rate = 0.01
num_steps = 2000
batch_size = 128

# Network Parameters
num_input = 784
num_classes = 10
dropout = 0.75

其中引入到了dropout, 在训练时使用dropout随机去掉一定比例的connection, 而在测试时不使用. 因此dropout可以通过Mode来进行切换.

定义神经网络

# Create the neural network
def conv_net(x_dict, n_classes, dropout, reuse, is_training):

    # Define a scope for reusing the variables.
    with tf.variable_scope('ConvNet', reuse=reuse):
        # TF Estimator input is a dict, is case of multiple inputs
        x = x_dict['images']

        # MNIST data input is a 1-D vector of 784 features (28*28 pixels)
        # Reshape to match picture format [Height*Width*Channel]
        # Tensor input become 4-D: [Batch Size, Height, Width, Channel]
        x = tf.reshape(x, shape=[-1, 28, 28, 1])

        # Convolution Layer with 32 filters and a kernel size of 5
        conv1 = tf.layers.conv2d(x, 32, 5, activation=tf.nn.relu)
        # Max Pooling (down-sampling) with strides of 2 and kernel size of 2
        conv1 = tf.layers.max_pooling2d(conv1, 2, 2)

        # Convolution Layer with 64 filters and a kernel size of 3
        conv2 = tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu)
        # Max Pooling (down-sampling) with strides of 2 and kernel size of 2
        conv2 = tf.layers.max_pooling2d(conv2, 2, 2)

        # Flatten the data to a 1-D vector for the fully connected layer
        fc1 = tf.contrib.layers.flatten(conv2)

        # Fully connected layer (in tf contrib folder for now)
        fc1 = tf.layers.dense(fc1, 1024)
        # Apply Dropout (if is_training is False, dropout is not applied)
        fc1 = tf.layers.dropout(fc1, rate=dropout, training=is_training)

        # Output layer, class prediction
        out = tf.layers.dense(fc1, n_classes)

    return out

以下内容需要说明:

  1. tf.variable.scope变量的reuse是控制该网络的变量是否能够被get_variable()函数调用的, 在训练模式之下,reuse应该被设置为True, 允许变量修改; 在测试时,reuse被设置为False.
  2. x = x_dict[‘images’]. 由于Estimator接收的输入为字典, 因此此处将x转换为字典类型.
  3. x = tf.reshape([x, shape=[-1, 28, 28, 1]]). 通过tf的reshape将该1维向量转变为4维向量, 其中每一维分别表示为 batch size, height, width, channel. 如果将其设置为-1, 则表示该位不指定, LeNet中不指定批大小,因此此处将其设置为-1.

定义模型函数

# Define the model function (following TF Estimator Template)
def model_fn(features, labels, mode):

    logits_train = conv_net(features, num_classes, dropout, reuse=False, is_training=True)
    logits_test = conv_net(features, num_classes, dropout, reuse=True, is_training=False)

    # Predictions
    pred_classes = tf.argmax(logits_test, axis=1)
    pred_probas = tf.nn.softmax(logits_test)

    # If prediction mode, early return
    if mode == tf.estimator.ModeKeys.PREDICT:
        return tf.estimator.EstimatorSpec(mode, predictions=pred_classes)

    # Define loss and optimizer
    loss_op = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits=logits_train, labels=tf.cast(labels, dtype=tf.int32)))
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
    train_op = optimizer.minimize(loss_op, global_step=tf.train.get_global_step())

    # Evaluate the accuracy of the model
    acc_op = tf.metrics.accuracy(labels=labels, predictions=pred_classes)

    # TF Estimator requires to return a EstimatorSpec, that specify
    # the different ops for training, evaluating et al.
    estim_specs = tf.estimator.EstimatorSpec(
        mode=mode,
        predictions=pred_classes,
        loss=loss_op,
        train_op=train_op,
        eval_metric_ops={'accuracy' : acc_op})

    return estim_specs
    # Refer to the function estimator

以下内容值得注意与说明:

  1. logits_train 与 logits_test 分别表示的是训练模式和测试模式, 其中可以通过is_training来指定模式.

建立Estimator

# Build the Estimator
model = tf.estimator.Estimator(model_fn)

定义输入函数并训练

# Define the input function for training
input_fn = tf.estimator.inputs.numpy_input_fn(
    x={'images' : mnist.train.images}, y=mnist.train.labels,
    batch_size=batch_size, num_epochs=None, shuffle=True)
# What is the shuffle and epochs really means?

# Train the Model
model.train(input_fn, steps=num_steps)

由于X是一个字典, 因此需要选出mnist中的训练图片进行训练. 另外shuffle在训练时将其置为True, 当期进行测试时设置为False. 接着使用models.train进行模型训练.

模型评估

# Evaluate the model
# Define the input function for evaluating
input_fn = tf.estimator.inputs.numpy_input_fn(
    x={'images': mnist.test.images}, y=mnist.test.labels,
    batch_size=batch_size, shuffle=False)
model.evaluate(input_fn)

使用测试数据集来进行测试, 然后使用model.evaluate进行模型评估, 使用的测试批为batch_size.

单图像测试

# Predict single images
n_images = 4
test_images = mnist.test.images[:n_images]
input_fn = tf.estimator.inputs.numpy_input_fn(
    x={'images': test_images}, shuffle=False)
preds = list(model.predict(input_fn))
# print(tf.estimator.inputs.numpy_input_fn(
#     x={'images': test_images}, shuffle=False))
# print(preds)

以上即是使用Tensorflow实现的卷积神经网络的全流程. 相对而言, 使用tensorflow还是十分简单清晰的. 后续将继续进行学习.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值