不确定性推理:从理论到实践的深度剖析
1. 从统计信息到置信度的挑战
在处理不确定性推理时,一个核心问题是如何从统计信息中获取置信度。然而,要找到一种通用方法,使其在所有可能情况下都能得出“正确”的结果,似乎是不可能的。这意味着我们必须深入理解具体应用的细节,才能做出合理的推断。
以下是一系列相关的练习,这些练习涵盖了从逻辑证明到实际应用的多个方面:
- 练习 11.1 :证明当 (T) 和 (T’) 都包含 (\varphi) 和 (KB) 中出现的所有符号时,(\frac{#worlds_{T,\vec{\tau}}^N(\varphi \land KB)}{#worlds_{T,\vec{\tau}}^N(KB)} = \frac{#worlds_{T’,\vec{\tau}}^N(\varphi \land KB)}{#worlds_{T’,\vec{\tau}}^N(KB)})。
- 练习 11.2 :将 (\varphi) 中所有近似相等和近似不等关系(如 (\approx_i),(\preceq_i),(\succeq_i))替换为相等和不等关系((=),(\leq),(\geq))得到 (\varphi=),证明 (\lim_{\vec{\tau}\to\vec{0}}\mu_{\vec{\tau}}^N(\varphi | KB) = \mu_{\vec{\tau}}^N(\varphi= | KB=))。这表明如果改变 (\mu_{\infty}(\varphi | KB)) 定义中的极限顺序,使用近似相等的优势将丧失。
- 练习 11.3
超级会员免费看
订阅专栏 解锁全文
1306

被折叠的 条评论
为什么被折叠?



