量子力学中的谐振子与三维角动量问题解析
1. 谐振子问题概述
在量子力学中,谐振子问题是一个重要的研究领域。这里给出了一系列与谐振子相关的问题,涵盖了从基本的对易关系证明到特定状态下物理量的求解等多个方面。
1.1 对易关系证明
- 证明([\hat{H}, \hat{a}] = -\hbar\omega\hat{a})和([\hat{H}, \hat{a}^{\dagger}] = \hbar\omega\hat{a}^{\dagger})。
- 证明([\hat{N}, \hat{a}] = -\hat{a})和([\hat{N}, \hat{a}^{\dagger}] = \hat{a}^{\dagger})。
1.2 状态向量与物理量求解
- 已知(t = 0)时粒子处于谐振子势中的状态向量(|\Psi (x, 0)\rangle = \frac{1}{\sqrt{3}}|1\rangle + \sqrt{\frac{2}{3}}|2\rangle),需求解:
- 作为时间函数的状态向量(|\Psi (x, t)\rangle)。
- 作为时间函数的能量期望值。
- 作为时间函数的位置期望值。
1.3 其他证明问题
- 证明对于谐振子([\hat{p}(t), \hat{p}(0)] = -im\omega\hbar\sin\omega t)和([\hat{x}(t), \hat{x}(0)] = -\
超级会员免费看
订阅专栏 解锁全文
83

被折叠的 条评论
为什么被折叠?



