20、量子力学中的谐振子与三维角动量问题解析

量子力学中的谐振子与三维角动量问题解析

1. 谐振子问题概述

在量子力学中,谐振子问题是一个重要的研究领域。这里给出了一系列与谐振子相关的问题,涵盖了从基本的对易关系证明到特定状态下物理量的求解等多个方面。

1.1 对易关系证明

  • 证明([\hat{H}, \hat{a}] = -\hbar\omega\hat{a})和([\hat{H}, \hat{a}^{\dagger}] = \hbar\omega\hat{a}^{\dagger})。
  • 证明([\hat{N}, \hat{a}] = -\hat{a})和([\hat{N}, \hat{a}^{\dagger}] = \hat{a}^{\dagger})。

1.2 状态向量与物理量求解

  • 已知(t = 0)时粒子处于谐振子势中的状态向量(|\Psi (x, 0)\rangle = \frac{1}{\sqrt{3}}|1\rangle + \sqrt{\frac{2}{3}}|2\rangle),需求解:
    • 作为时间函数的状态向量(|\Psi (x, t)\rangle)。
    • 作为时间函数的能量期望值。
    • 作为时间函数的位置期望值。

1.3 其他证明问题

  • 证明对于谐振子([\hat{p}(t), \hat{p}(0)] = -im\omega\hbar\sin\omega t)和([\hat{x}(t), \hat{x}(0)] = -\
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值