随机森林模板

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.tree import export_graphviz
import pydot
import os

读取数据集

data = pd.read_csv(‘your_dataset.csv’) # 请替换成你的数据集文件名

准备特征和标签

X = data.drop(‘target_column_name’, axis=1) # 请替换为你的目标列名
y = data[‘target_column_name’]

划分训练集和测试集

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)

创建随机森林模型

rf = RandomForestRegressor(n_estimators=100, random_state=42)
rf.fit(X_train, y_train)

随机森林模型预测

predictions = rf.predict(X_test)

绘制随机森林中的一棵树

tree = rf.estimators_[0] # 获取第一棵树
export_graphviz(tree, out_file=‘tree.dot’, feature_names=X.columns, rounded=True, precision=1)
(graph, ) = pydot.graph_from_dot_file(‘tree.dot’)
graph.write_png(‘tree.png’)

打印模型评估指标等

显示树的可视化

plt.figure(figsize=(20, 10))
plt.imshow(plt.imread(‘tree.png’))
plt.axis(‘off’)
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值