深度残差网络(Deep residual network, ResNet)的提出是CNN图像史上的一件里程碑事件。
论文:Deep Residual Learning for Image Recognition
思想
作者根据输入将层表示为学习残差函数。实验表明,残差网络更容易优化,并且能够通过增加相当的深度来提高准确率。
核心是解决了增加深度带来的副作用(退化问题),这样能够通过单纯地增加网络深度,来提高网络性能。
深度网络的退化问题
1️⃣ 网络的深度为什么重要?
因为CNN能够提取low/mid/high-level的特征,网络的层数越多,意味着能够提取到不同level的特征越丰富。并且,越深的网络提取的特征越抽象,越具有语义信息。
2️⃣ 为什么不能简单地增加网络层数?
- 对于原来的网络,如果简单地增加深度,会导致梯度消失或梯度爆炸。
对于该问题的解决方法是正则化初始化和中间的正则化层(Batch Normalization),这样的话可以训练几十层的网络。 - 虽然通过上述方法能够训练了,但是又会出现另一个问题,就是退化问题:网络层数增加,但是在训练集上的准确率却饱和甚至下降了。这个不能解释为过拟合overfitting,因为overfit应该表现为在训练集上表现更好才对。
退化问题说明了深度网络不能很简单地被很好地优化。
3️⃣ 怎么解决退化问题?
深度残差网络。如果深网络的后面那些层是恒等映射,那么模型就退化为一个浅层网络。那现在要解决的就是学习恒等映射函数了。 但是直接让一些层去拟合一个潜在的恒等映射函数H(x) = x,比较困难,这可能就是深层网络难以训练的原因。但是,如果把网络设计为 H(x) = F(x) + x。我们可以转换为学习一个残差函数 F(x) = H(x) - x. 只要F(x)=0,就构成了一个恒等映射H(x) = x. 而且,拟合残差肯定更加容易。
ResNet结构
残差学习的结构
ResNet提出了两种mapping:一种是identity mapping,指的就是图1中”弯弯的曲线”,也就是所谓的短路连接 “shortcut connection”,另一种residual mapping,指的就是除了”弯弯的曲线“那部分,所以最后的输出是 y=F(x)+x。
identity mapping顾名思义,就是指本身,也就是公式中的x,而residual mapping指的是“差”,也就是y−x,所以残差指的就是F(x) 部分。
ResNet使用两种残差单元,如图6所示。左图对应的是浅层网络,而右图对应的是深层网络。
两种Shortcut Connection方式
对于残差网络,维度匹配(channel个数一致) 的shortcut连接为实线,反之为虚线。
对于Shortcut Connection,当输入和输出维度一致时,可以直接将输入加到输出上。但是当维度不一致时(对应的是维度增加一倍),这就不能直接相加。有两种策略:
- 采用zero-padding增加维度。*此时一般要先做一个downsamp,可以采用strde=2的pooling,这样不会增加参数;
- 乘以W矩阵投影到新的空间。实现是用1x1卷积实现的,直接改变1x1卷积的filters数目。这种会增加参数。
网络设计规则
ResNet的一个重要设计原则是:
- 对于输出feature map大小相同的层,有相同数量的filters,即channel数相同;
- 当 feature map大小减半时(池化),filters数量翻倍。这保持了网络层的复杂度。
整体ResNet结构
ResNet的TensorFlow实现
这里给出ResNet50的TensorFlow实现,模型的实现参考了Caffe版本的实现,核心代码如下:
class ResNet50(object):
def __init__(self, inputs, num_classes=1000, is_training=True,
scope=</