SE Net通道注意力机制
常规卷积操作中,输入信息进行计算后,每个通道会直接进行求和,此时每个通道的重要程度是相同的,但是通道维度的注意力机制,是考虑到了每个通道特征的重要程度(即每个特征图层的权重),来增强有用的通道特征,抑制不重要的通道特征。
一、SENet结构
SENet是基于注意力机制的卷积神经网络架构。
输入特征图X,经过一次传统的卷积操作,得到特征图U,大小为H*W*C,C个通道。接下来主要有两个操作:Squeeze和Excitation。
Squeeze(压缩操作):是对特征图U做一个全局平均池化,输出1*1*C数据,这个特征向量一定程度上可以代表之前的输入信息,是对每个通道上的信息进行压