通道注意力机制:SENet、CBAM

SE Net通道注意力机制

常规卷积操作中,输入信息进行计算后,每个通道会直接进行求和,此时每个通道的重要程度是相同的,但是通道维度的注意力机制,是考虑到了每个通道特征的重要程度(即每个特征图层的权重),来增强有用的通道特征,抑制不重要的通道特征。

一、SENet结构

SENet是基于注意力机制的卷积神经网络架构。

输入特征图X,经过一次传统的卷积操作,得到特征图U,大小为H*W*C,C个通道。接下来主要有两个操作:Squeeze和Excitation。

Squeeze(压缩操作):是对特征图U做一个全局平均池化,输出1*1*C数据,这个特征向量一定程度上可以代表之前的输入信息,是对每个通道上的信息进行压

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值