tf.split()函数的用法

在tensorflow 的代码里经常看到tf.split()这个函数,今天来扒一扒这个API的用法

tf.split(
    value,
    num_or_size_splits,
    axis=0,
    num=None,
    name='split'
)

    1
    2
    3
    4
    5
    6
    7
    8

Splits a tensor into sub tensors.

If num_or_size_splits is an integer type, num_split, then splits value along dimension axis into num_split smaller tensors. Requires that num_split evenly divides value.shape[axis].

If num_or_size_splits is not an integer type, it is presumed to be a Tensor size_splits, then splits value into len(size_splits) pieces. The shape of the i-th piece has the same size as the value except along dimension axis where the size is size_splits[i].

根据官方文档的说法这个函数的用途简单说就是把一个张量划分成几个子张量。
value:准备切分的张量
num_or_size_splits:准备切成几份
axis : 准备在第几个维度上进行切割
其中分割方式分为两种
1. 如果num_or_size_splits 传入的 是一个整数,那直接在axis=D这个维度上把张量平均切分成几个小张量
2. 如果num_or_size_splits 传入的是一个向量(这里向量各个元素的和要跟原本这个维度的数值相等)就根据这个向量有几个元素分为几项)
举个例子

# 张量为(5, 30)
# 这个时候5是axis=0, 30是axis=1,如果要在axis=1这个维度上把这个张量拆分成三个子张量
#传入向量时
split0, split1, split2 = tf.split(value, [4, 15, 11], 1)
tf.shape(split0)  # [5, 4]
tf.shape(split1)  # [5, 15]
tf.shape(split2)  # [5, 11]
# 传入整数时
split0, split1, split2 = tf.split(value, num_or_size_splits=3, axis=1)
tf.shape(split0)  # [5, 10]
 

import time import tensorflow.compat.v1 as tf tf.disable_v2_behavior() from tensorflow.examples.tutorials.mnist import input_data import mnist_inference import mnist_train tf.compat.v1.reset_default_graph() EVAL_INTERVAL_SECS = 10 def evaluate(mnist): with tf.Graph().as_default() as g: #定义输入与输出的格式 x = tf.compat.v1.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input') y_ = tf.compat.v1.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input') validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels} #直接调用封装好的函数来计算前向传播的结果 y = mnist_inference.inference(x, None) #计算正确率 correcgt_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correcgt_prediction, tf.float32)) #通过变量重命名的方式加载模型 variable_averages = tf.train.ExponentialMovingAverage(0.99) variable_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variable_to_restore) #每隔10秒调用一次计算正确率的过程以检测训练过程中正确率的变化 while True: with tf.compat.v1.Session() as sess: ckpt = tf.train.get_checkpoint_state(minist_train.MODEL_SAVE_PATH) if ckpt and ckpt.model_checkpoint_path: #load the model saver.restore(sess, ckpt.model_checkpoint_path) global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] accuracy_score = sess.run(accuracy, feed_dict=validate_feed) print("After %s training steps, validation accuracy = %g" % (global_step, accuracy_score)) else: print('No checkpoint file found') return time.sleep(EVAL_INTERVAL_SECS) def main(argv=None): mnist = input_data.read_data_sets(r"D:\Anaconda123\Lib\site-packages\tensorboard\mnist", one_hot=True) evaluate(mnist) if __name__ == '__main__': tf.compat.v1.app.run()对代码进行改进
最新发布
05-26
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值