傅里叶变换、广义函数、微分方程与电路分析
1. 傅里叶变换与广义函数
1.1 分布的傅里叶变换定义
当 (f) 和 (\varphi) 都是测试函数时,积分顺序可交换:
[< \mathcal{F}\varphi, f > = \int_{-\infty}^{\infty} f(\omega)(\int_{-\infty}^{\infty} \varphi(t) e^{-i\omega t} dt) d\omega = \int_{-\infty}^{\infty} \varphi(t)(\int_{-\infty}^{\infty} f(\omega) e^{-i\omega t} d\omega) dt = < \varphi,\mathcal{F} f >.]
若将 (f) 替换为分布 (d),傅里叶变换操作 (\mathcal{F}) 可视为将 (S’(\Omega))(变换变量中的分布或广义函数)映射到 (S’(\mathcal{T}))。对于 (d \in S’(\Omega)),(\mathcal{F} d) 是 (S’(\mathcal{T})) 中的元素,满足:
[< \varphi, \mathcal{F}d >=< \mathcal{F}\varphi, d >=< \tilde{\varphi},d >]
对于所有测试函数 (\varphi) 都成立。这种间接定义表明分布的傅里叶变换是存在的。
1.2 示例计算
- 狄拉克函数 (\delta) 的变换 :
对于所有测试函数
超级会员免费看
订阅专栏 解锁全文
1156

被折叠的 条评论
为什么被折叠?



