34、傅里叶变换、广义函数、微分方程与电路分析

傅里叶变换、广义函数、微分方程与电路分析

1. 傅里叶变换与广义函数

1.1 分布的傅里叶变换定义

当 (f) 和 (\varphi) 都是测试函数时,积分顺序可交换:
[< \mathcal{F}\varphi, f > = \int_{-\infty}^{\infty} f(\omega)(\int_{-\infty}^{\infty} \varphi(t) e^{-i\omega t} dt) d\omega = \int_{-\infty}^{\infty} \varphi(t)(\int_{-\infty}^{\infty} f(\omega) e^{-i\omega t} d\omega) dt = < \varphi,\mathcal{F} f >.]
若将 (f) 替换为分布 (d),傅里叶变换操作 (\mathcal{F}) 可视为将 (S’(\Omega))(变换变量中的分布或广义函数)映射到 (S’(\mathcal{T}))。对于 (d \in S’(\Omega)),(\mathcal{F} d) 是 (S’(\mathcal{T})) 中的元素,满足:
[< \varphi, \mathcal{F}d >=< \mathcal{F}\varphi, d >=< \tilde{\varphi},d >]
对于所有测试函数 (\varphi) 都成立。这种间接定义表明分布的傅里叶变换是存在的。

1.2 示例计算

  • 狄拉克函数 (\delta) 的变换
    对于所有测试函数
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值