信号与系统(三):系统分析方法对比:微分方程 相量 傅里叶级数/变换 拉普拉斯变换

 

      特点
方法
适用范围数学意义物理意义
系统响应类型输入信号类型简化计算的方法简化计算的原因 
微分方程全响应可求特解的信号特解:输入决定
 +
通解:系统结构、初态决定  指数基
向量法稳态响应正弦周期信号阻抗模型变换成指数信号
化微分方程为代数方程
正弦周期信号是复平面上圆周运动的一个维度
傅里叶级数稳态响应周期信号并没有简化计算...以指数信号为基
化微分方程为代数方程 
周期信号都是正弦信号的线性组合
周期信号具有离散频谱
系统对频谱进行纵向缩放:H(jw)之意义
傅里叶变换稳态响应可积信号并没有简化计算...以指数信号为基
化微分方程为代数方程 
时限信号都是正弦信号的线性组合
周期信号具有连续频谱
系统对频谱进行纵向缩放:H(jw)之意义
拉普拉斯变换全响应任意输入信号查表 卷积以指数信号为基
化微分方程为代数方程 
任意信号都是指数信号的线性组合
任意信号具有连续复频谱
系统对频谱进行纵向缩放:H(s)之意义

H(s)之意义:
快速获得特征方程,得到齐次微分方程通解,
用于判断系统稳定性     

h(t)之意义:
任意信号的零状态响应是信号与冲击响应的卷积:
所谓冲击信号δ(t),是脉冲信号序列P(t)的的极限。
所谓脉冲信号P(t),是只在0时刻以后足够短时间内不为0、而面积为1的信号(可以是矩形、三角形等,只要连续、面积为1即可)。根据一致收敛原理,脉冲信号宽度越窄,其响应y(t)=h(t)*P(t)越趋近于h(t)。

解线性阻抗电路正弦稳态响应的本质原理
    求解电容、电感、电阻组成电路的正弦稳态响应,可以根据基尔霍夫定律建立线性微分方程组,可简化成关于含sinwt coswt的线性代数方程。可通过转化成相量,将其进一步转化成复数域上的线性方程组,求得复函数解后,将其转回实函数解sinwt + coswt。

解线性阻抗电路周期稳态响应的本质原理
    将输入信号分解成复指数周期信号(傅里叶级数),用向量法获得各分量响应,根据线性叠加原理,合成输出响应信号。

解线性阻抗电路时限激励响应的本质原理
    求解电容、电感、电阻组成电路的频率响应,可以根据基尔霍夫定律建立线性微分方程组。可通过傅里叶变换,将该线性微分方程组转化成复数域上的线性方程组,求得复函数解后,通过傅里叶反变换将其转为实函数解。 

解线性阻抗电路任意激励响应的本质原理
    求解电容、电感、电阻组成电路的任意响应,可以根据基尔霍夫定律建立线性微分方程组。可通过拉普拉斯变换,将该线性微分方程组转化成复数域上的线性方程组,求得复函数解后,通过拉普拉斯反变换将其转为实函数解。

相量法       <  傅里叶级数/变换  <  拉普拉斯变换
具频率意义     具频率意义              收敛范围广  兼顾初态  简便

#######################################################

                               微积分
                                  ↓
连续系统      线性常系数微分方程
                         ↑                ↑
                   广义函数     调和分析(傅里叶变换)
                         ↑         /      ↑
                   泛函分析     复变函数

离散系统      线性常系数差分方程
                                          ↑
                                     调和分析(傅里叶变换)
                                   /      ↑
                   泛函分析     复变函数

#######################################################


以下仅讨论连续时间信号与系统

1)线性时不变系统的数学本质是什么?

系统的数学本质是,微分方程组线性时不变系统的数学本质是,线性常系数微分方程组所以,研究线性时不变系统,本质上是研究线性常系数微分方程组

2)为什么想到引入卷积变换?

级数展开是早期求解线性常系数微分方程的一种有效手段级数是一种离散无限维,卷积是一种连续无限维都是无限维,既然级数能有效处理线性常系数微分方程,那么卷积也应该可以。

问题的关键是选择合适的基函数。指数函数的微分不变形,使他成为处理微分方程问题的上佳选择。

3)为什么有了拉普拉斯变换,还要更弱的傅里叶变换?

傅里叶变换比拉普拉斯变换弱,但它比拉普拉斯变换更具有鲜明的物理意义。傅里叶变换是傅里叶级数的向连续无限维的推广,继承了傅里叶级数的物理意义。

早期的傅里叶级数是以实数域的正余弦函数为基,后来根据欧拉公式,以复指数函数为基。作为傅里叶级数推广而产生的傅里叶变换,当然也以复指数函数为基。不管拉普拉斯是怎么想到用复指数函数为基的,至少傅里叶是独立想到以正余弦函数为基的。

所以,不能简单地认为傅里叶变换是拉普拉斯变换的特例。同理,不能认为傅里叶变换能替代傅里叶级数,也不能认为傅里叶级数可以替代相量法。它们处理的信号范围不一样,但形式是相似的,揭示的本质是一样的。

4)如果说傅里叶变换具有物理意义,那怎么理解吉布斯效应?

5)为什么要引入狄拉克函数?

不引入狄拉克函数,有些理论要说清楚的话,就需要比较严格的数学证明。引入狄拉克函数,跳过了复杂的数学证明,简化了数学描述,清晰了物理意义,连贯了各种分析方法。狄拉克函数的本质是,一种极限运算,可以和积分交换顺序,其数学基础是广义函数论。

6)为什么引入离散时间变换?
数字信号通信的发展,促使人们研究离散信号与系统的特性容易想到,将处理连续信号与系统的方法,改造改造,应用到离散时间信号与系统,产生了相应的离散时间变换。

连接连续时间信号和离散时间信号的桥梁,是采样定理。

 

  • 1
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 嗨!首先感谢你的问题。Matlab可以使用内置函数fft进行傅里变换的计算。下面是一个简单的示例代码: ``` % 定义时间序列 t = linspace(0,2*pi,1000); % 定义信号 y = sin(2*pi*5*t) + cos(2*pi*10*t); % 计算傅里变换 Y = fft(y); % 计算频率序列 f = linspace(0,1,1000); % 绘制频谱图 plot(f,abs(Y)); ``` 关于傅里变换求解偏微分方程和积分方程,这是一个非常广泛的领域,Matlab在这个领域也有很多的工具箱和函数。具体的实现方法可以根据不同的方程和问题进行选择和调整。如果你有具体的问题需要求解,可以提供更多的信息,我可以为你提供更具体的帮助。 ### 回答2: Matlab是一种功能强大的科学计算软件,可以方便地实现傅里变换(Fourier Transform)和傅立级数展开(Fourier Series Expansion)。 傅里变换是一种将一个信号从时域(时间域)转换到频域(频率域)的数学工具,通过分析信号的频谱特征,可以对信号进行频谱分析、滤波、降噪等操作。在Matlab中,可以使用fft()函数来实现离散傅里变换(DFT),ifft()函数来实现离散傅里变换(IDFT),fftshift()函数用于对频谱进行中心化处理。 傅立级数展开可以将一个周期信号表示为一系列正弦和余弦函数的线性组合,它在信号分析的应用中被广泛使用。在Matlab中,可以使用FourierSeries()函数来实现傅立级数展开,可以指定展开的周期、频率分的数和振幅等参数。 傅立变换在偏微分方程和积分方程的求解中也有重要应用。通过将偏微分方程或积分方程转化到频率域,可以简化求解过程。在Matlab中,可以通过傅里变换来求解时谐偏微分方程(Time-Harmonic PD Es),即偏微分方程的解具有频率依赖性质。通过将时谐偏微分方程转化为代数方程,可以使用Matlab的求解器(如solve()函数)得到解析解。 对于积分方程,傅立变换同样可以发挥作用。可以通过将积分方程转化为代数方程,然后使用Matlab的求解器进行求解。在这个过程中,使用傅里变换的目的是对局部波的响应进行频谱分析,并将问题转化为频域下的代数方程求解。 综上所述,Matlab提供了丰富的函数和工具,可以方便地实现傅里变换和傅立级数展开,并应用于偏微分方程和积分方程的求解。这些功能使得Matlab成为工程学、物理学以及其他科学领域中重要的数值计算和信号处理工具。 ### 回答3: Matlab可以用来实现傅立变换,从而求解偏微分方程和积分方程。 傅立变换是一种重要的数学工具,可以将一个函数表示为一系列正弦和余弦函数的组合。Matlab中有现成的函数fft可以实现离散傅立变换(DFT),而ifft函数可以进行逆傅立变换。 对于偏微分方程,我们可以通过傅立变换微分方程转化为代数方程。首先,我们将待求函数进行傅立变换,得到其频率域表示。然后,我们可以将微分方程中的导数操作转化为乘法操作,从而得到一个代数方程。通过求解这个代数方程,我们可以得到频率域中的解。最后,使用ifft函数将频率域中的解进行逆傅立变换,得到时域中的解。 对于积分方程,我们也可以利用傅立变换来求解。通过将积分方程进行傅立变换,可以将其转化为代数方程。然后,我们可以通过求解这个代数方程来得到频率域中的解。最后,再将频率域中的解进行逆傅立变换,得到时域中的解。 总之,利用Matlab中的fft和ifft函数,我们可以利用傅立变换来求解偏微分方程和积分方程。这为我们研究和解决各种数学问题提供了一种有效的方法

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值