【论文速递】CVPR2022 - Point-NeRF:基于点的神经辐射场

Point-NeRF结合了NeRF和深度多视图立体方法的优点,通过神经3D点云模拟辐射场,实现高效渲染。通过预训练的深度网络初始化并微调,能以更短的时间达到超越NeRF的视觉效果。这种方法解决了NeRF重建时间长的问题,适用于多种3D重建场景,并通过点的生长和修剪机制处理异常值,提高重建和渲染质量。
摘要由CSDN通过智能技术生成

【论文速递】CVPR2022 - Point-NeRF:基于点的神经辐射场

【论文原文】:Point-NeRF: Point-based Neural Radiance Fields

作者信息】:Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu, Kalyan Sunkavalli, Ulrich Neumann

获取地址:https://arxiv.org/pdf/2201.08845.pdf

博主关键词: 神经渲染,神经辐射场

摘要:

NeRF 等体积神经渲染方法可生成高质量的视图合成结果,但会针对每个场景进行优化,从而导致重建时间过长。 另一方面,深度多视图立体方法可以通过直接网络推理快速重建场景几何。 Point-NeRF 通过使用神经 3D 点云和相关的神经特征来模拟辐射场,从而结合了这两种方法的优点。 Point-NeRF 可以通过在基于光线行进的渲染管道中聚合场景表面附近的神经点特征来高效渲染。 此外,Point-NeRF 可以通过预训练的深度网络的直接推理来初始化,以生成神经点云; 这个点云可以通过 30 倍更快的训练时间进行微调以超越 NeRF 的视觉质量。 Point-NeRF 可以与其他 3D 重建方法相结合,并通过一种新颖的修剪和生长机制处理此类方法中的错误和异常值。 在 DTU 、NeRF Synthetics、ScanNet 和 Ta

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值