【论文速递】CVPR2022 - Point-NeRF:基于点的神经辐射场
【论文原文】:Point-NeRF: Point-based Neural Radiance Fields
【作者信息】:Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu, Kalyan Sunkavalli, Ulrich Neumann
获取地址:https://arxiv.org/pdf/2201.08845.pdf
博主关键词: 神经渲染,神经辐射场
摘要:
NeRF 等体积神经渲染方法可生成高质量的视图合成结果,但会针对每个场景进行优化,从而导致重建时间过长。 另一方面,深度多视图立体方法可以通过直接网络推理快速重建场景几何。 Point-NeRF 通过使用神经 3D 点云和相关的神经特征来模拟辐射场,从而结合了这两种方法的优点。 Point-NeRF 可以通过在基于光线行进的渲染管道中聚合场景表面附近的神经点特征来高效渲染。 此外,Point-NeRF 可以通过预训练的深度网络的直接推理来初始化,以生成神经点云; 这个点云可以通过 30 倍更快的训练时间进行微调以超越 NeRF 的视觉质量。 Point-NeRF 可以与其他 3D 重建方法相结合,并通过一种新颖的修剪和生长机制处理此类方法中的错误和异常值。 在 DTU 、NeRF Synthetics、ScanNet 和 Ta