线性回归:给定训练数据,,其中,回归学习一个从输入x到输出y的映射f,对新的测试数据x,用学习到的映射对其进行预测:
可以采用均方误差和r2_score对模型性能进行评估,均方误差是越小越好,r2_score是越大越好。
MSE(均方差,方差):mean squared error
该统计参数是预测数据和原始数据对应点误差的平方和的均值
RMSE(均方根) Root mean squared error
回归系统的拟合标准差,是MSE的平方根,其计算的公式
RidgeCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, gcv_mode=None, store_cv_values=False)
alphas为正则参数的取值范围;
soring指得是在交叉验证的时候,用的什么评价指标,缺省的是MSE,
cv=None,用的是留一交叉验证;
store_cv_values=False,就不保存cv_values的值
岭回归案例:使用结构风险最小化(损失函数)+正则化(L2范数)