线性回归

线性回归:给定训练数据,,其中,回归学习一个从输入x到输出y的映射f,对新的测试数据x,用学习到的映射对其进行预测:

可以采用均方误差和r2_score对模型性能进行评估,均方误差是越小越好,r2_score是越大越好。

MSE(均方差,方差):mean squared error

该统计参数是预测数据和原始数据对应点误差的平方和的均值


RMSE(均方根)    Root mean squared error

回归系统的拟合标准差,是MSE的平方根,其计算的公式


RidgeCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, gcv_mode=None, store_cv_values=False)

alphas为正则参数的取值范围;

soring指得是在交叉验证的时候,用的什么评价指标,缺省的是MSE,

cv=None,用的是留一交叉验证;

store_cv_values=False,就不保存cv_values的值

岭回归案例:使用结构风险最小化(损失函数)+正则化(L2范数)





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值