GAN入门实现MNIST数据集生成

参考:https://www.cnblogs.com/bonelee/p/9166084.html

GAN框架

对抗式生成网络GAN(Generative Adversarial Net),是一个非常流行的生成式模型。 GAN 有两个网络,一个是 生成器generator,用来生成伪样本;一个是判别器 discriminator,用于判断样本的真假。通过两个网络互相博弈和对抗来达到最好的生成效果,示意图如下:
在这里插入图片描述
首先介绍KL散度(KL divergence),用于衡量两种概率分布的相似程度,数值越小,表示两种概率分布越接近。离散的概率分布:
D K L ( P ∣ ∣ Q ) = ∑ i P ( i ) log ⁡ P ( i ) Q ( i ) D_{KL}(P||Q)=\sum_{i}P(i)\log{\frac{P(i)}{Q(i)}} DKL(PQ)=iP(i)logQ(i)P(i)
连续的概率分布:
D K L ( P ∣ ∣ Q ) = ∫ − ∞ ∞ P ( x ) log ⁡ P ( x ) Q ( x ) d x D_{KL}(P||Q)=\int_{-\infty}^{\infty}P(x)\log{\frac{P(x)}{Q(x)}}dx DKL(PQ)=P(x)logQ(x)P(x)dx
设真实样本集服从分布 P d a t a ( x ) P_{data}(x) Pdata(x),其中 x x x是一个真实样本。生成器产生的分布设为 P G ( x ; θ ) P_{G}(x;\theta) PG(x;θ), θ \theta θ是生成器G的参数,通过优化 θ \theta θ使得 P G ( x ; θ ) P_{G}(x;\theta) PG(x;θ) P d a t a ( x ) P_{data}(x) Pdata(x)尽可能接近,也就是生成的图片与真实分布一致。
从真实数据分布 P d a t a ( x ) P_{data}(x) Pdata(x)里面取样 m m m个点, { x 1 , x 2 , . . . , x m } \{x^{1},x^{2},...,x^{m}\} {x1,x2,...,xm},根据给定的参数 θ \theta θ可以计算出生成这 m m m个样本数据的似然为: L = ∏ i = 1 m P G ( x i ; θ ) L=\prod_{i=1}^{m} P_{G}(x^{i};\theta) L=i=1mPG(xi;θ)
θ ∗ \theta^{*} θ为最大化似然的结果:
θ ∗ = arg ⁡ max ⁡ θ ∏ i = 1 m P G ( x i ; θ ) ∝ arg ⁡ max ⁡ θ ∑ i = 1 m log ⁡ P G ( x i ; θ ) ≈ arg ⁡ max ⁡ θ E x ∼ P d a t a [ log ⁡ P G ( x ; θ ) ] = arg ⁡ max ⁡ θ ∫ x P d a t a ( x ) log ⁡ P G ( x ; θ ) d x ∝ arg ⁡ max ⁡ θ { ∫ x P d a t a ( x ) log ⁡ P G ( x ; θ ) d x − ∫ x P d a t a ( x ) log ⁡ P d a t a ( x ) d x } = arg ⁡ max ⁡ θ ∫ x P d a t a ( x ) log ⁡ P G ( x ; θ ) P d a t a ( x ) d x = arg ⁡ max ⁡ θ K L ( P d a t a ( x ) ∣ ∣ P G ( x ; θ ) ) \theta^{*}=\arg \max_{\theta}\prod_{i=1}^{m}P_{G}(x^{i};\theta)\\ \propto \arg \max_{\theta}\sum_{i=1}^{m}\log P_{G}(x^{i};\theta)\\ \approx \arg \max_{\theta}E_{x\sim P_{data}}[\log P_{G}(x;\theta)]\\ =\arg \max_{\theta} \int_{x}P_{data}(x)\log P_{G}(x;\theta)dx\\ \propto \arg \max_{\theta} \{\int_{x}P_{data}(x)\log P_{G}(x;\theta)dx-\int_{x}P_{data}(x)\log P_{data}(x)dx\}\\ = \arg \max_{\theta}\int_{x}P_{data}(x)\log \frac{P_{G}(x;\theta)}{P_{data}(x)}dx\\ =\arg \max_{\theta} KL(P_{data}(x)||P_{G}(x;\theta)) θ=argθmaxi=1mPG(xi;θ)argθmaxi=1mlogPG(xi;θ)argθmaxExPdata[logPG(x;θ)]=argθmaxxPdata(x)logPG(x;θ)dxargθmax{xPdata(x)logPG(x;θ)dxxPdata(x)logPdata(x)dx}=argθmaxxPdata(x)logPdata(x)PG(x;θ)dx=argθmaxKL(Pdata(x)PG(x;θ))
z z z是随机噪声,服从正态分布或均匀分布 P p r i o r ( z ) P_{prior}(z) Pprior(z),通过生成器 G ( z ) = x G(z)=x G(z)=x生成图片, P G ( x ; θ ) = ∫ z P p r i o r ( z ) I [ G ( z ) = x ] d z P_{G}(x;\theta)=\int_{z}P_{prior}(z)I_{[G(z)=x]}dz PG(x;θ)=zPprior(z)I[G(z)=x]dz
其中 I [ G ( z ) = x ] I_{[G(z)=x]} I[G(z)=x]为示性函数:
I G ( z ) = x = { 0 , G ( z ) ≠ x 1 , G ( z ) = x I_{G(z)=x}=\left\{\begin{matrix} 0,G(z)\neq x\\ 1,G(z)=x \end{matrix}\right. IG(z)=x={0,G(z)̸=x1,G(z)=x
这样无法通过最大似然对生成器参数 θ \theta θ进行求解。因此采用判别器D分类 P G ( x ) P_{G}(x) PG(x) P d a t a ( x ) P_{data}(x) Pdata(x)产生的误差 V ( G , D ) V(G,D) V(G,D)来取代极大似然估计。
在这里插入图片描述
下面是训练判别器的示意图,此时的生成器的权重被固定,真实图片和生成图片都会输入到判别器中:
在这里插入图片描述
下面是训练生成器的示意图,此时的判别器的权重被固定,生成图片输入到判别器中:
在这里插入图片描述

误差

对于判别器来说,希望能够正确地分类真样本和假样本,所以需要最小化分类误差,也可以说是最大化奖励 V ( D , G ) V(D,G) V(D,G),这里奖励就是交叉熵的负数形式:
V ( D , G ) = E x ∼ P d a t a [ log ⁡ D ( x ) ] + E x ∼ P g e n [ log ⁡ ( 1 − D ( x ) ) ] V(D,G)=\mathbb{E}_{x\sim P_{data}}[\log D(x)]+\mathbb{E}_{x\sim P_{gen}}[\log(1-D(x))] V(D,G)=ExPdata[logD(x)]+ExPgen[log(1D(x))]
对于上述的奖励函数,需要优化判别器D和生成器G两个参数,此时可以采用的方法是固定一个优化另外一个。对于D来说,希望最大加奖励V(D,G),对于生成器来说,希望最小化奖励V(D,G),也就是说希望生成的图片能骗过生成器。此时的优化目标为: min ⁡ G max ⁡ D V ( D , G ) \min_{G}\max_{D}V(D,G) GminDmaxV(D,G)
当博弈达到纳什平衡(Nash equilibrium)时,i.e., P d a t a ( x ) = P g e n ( x ) ∀ x P_{data}(x)=P_{gen}(x) \forall x Pdata(x)=Pgen(x)x, D ( x ) = 0.5 D(x)=0.5 D(x)=0.5,G是最优的。

训练过程

在一个epoch中,首先使用真实图片和generator生成的假图片来训练discriminator是否能判别真假,即是二分类问题。之后只用generator生成假图片在discriminator的误差来训练generator。
在这里插入图片描述

GAN优缺点

优点:

  • 抽样和生成很简单直接。
  • 训练不涉及最大似然估计。
  • 生成器不接触真实样本,对过拟合具有健壮性。
  • 实验上,GAN擅长捕获分布的模式。

缺点:

  • 生成样本的概率分布是隐式的,无法直接计算概率。因此vanilla GANs只能用于生成样本。
  • 训练不收敛。SGD通常在确定的条件下找到最有参数,可能不会收敛到一个Nash平衡点。
  • mode-collapse模式坍塌。一般出现在GAN训练不稳定的时候,具体表现为生成出来的结果非常差,但是即使加长训练时间后也无法得到很好的改善。
    在这里插入图片描述
    具体原因可以解释如下:GAN采用的是对抗训练的方式,G的梯度更新来自D,所以G生成的好不好,需要凭借D的判断。但是如果某一次G生成的样本可能并不是很真实,但是D给出了正确的评价,或者是G生成的结果中一些特征得到了D的认可,这时候G生成的结果是正确的,那么接下来通过D生成的样本还会得到高的评价,实际上G生成的并不怎么样,但是他们两个就这样自我欺骗下去了,导致最终生成结果缺失一些信息,特征不全。

GAN生成MNIST数据集

以下使用GAN来生成手写数字。

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from torchvision.utils import save_image

z_dimension = 100  # the dimension of noise tensor


class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.dis = nn.Sequential(
            nn.Linear(784, 256),
            nn.LeakyReLU(0.2),
            nn.Linear(256, 256),
            nn.LeakyReLU(0.2),
            nn.Linear(256, 1),
            nn.Sigmoid()
        )

    def forward(self, x):
        x = self.dis(x)
        return x


class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        self.gen = nn.Sequential(
            nn.Linear(z_dimension, 256),
            nn.ReLU(True),
            nn.Linear(256, 256),
            nn.ReLU(True),
            nn.Linear(256, 784),
            nn.Tanh()
        )

    def forward(self, x):
        x = self.gen(x)
        return x


transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize([0.5], [0.5]),
])

trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True)

testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False)

def to_img(x):
    out = 0.5 * (x + 1)  # 将x的范围由(-1,1)伸缩到(0,1)
    out = out.view(-1, 1, 28, 28)
    return out

D = Discriminator().to('cpu')
G = Generator().to('cpu')

criterion = nn.BCELoss()
D_optimizer = torch.optim.Adam(D.parameters(), lr=0.0003)
G_optimizer = torch.optim.Adam(G.parameters(), lr=0.0003)

# Training
def train(epoch):
    print('\nEpoch: %d' % epoch)
    D.train()
    G.train()
    all_D_loss = 0.
    all_G_loss = 0.
    for batch_idx, (inputs, targets) in enumerate(trainloader):
        inputs, targets = inputs.to('cpu'), targets.to('cpu')
        num_img = targets.size(0)
        real_labels = torch.ones_like(targets, dtype=torch.float)
        fake_labels = torch.zeros_like(targets, dtype=torch.float)
        inputs_flatten = torch.flatten(inputs, start_dim=1)

        # Train Discriminator
        real_outputs = D(inputs_flatten)
        D_real_loss = criterion(real_outputs, real_labels)

        z = torch.randn((num_img, z_dimension))  # Random noise from N(0,1)
        fake_img = G(z)  # Generate fake images
        fake_outputs = D(fake_img.detach())
        D_fake_loss = criterion(fake_outputs, fake_labels)

        D_loss = D_real_loss + D_fake_loss
        D_optimizer.zero_grad()
        D_loss.backward()
        D_optimizer.step()

        # Train Generator
        z = torch.randn((num_img, z_dimension))
        fake_img = G(z)
        G_outputs = D(fake_img)
        G_loss = criterion(G_outputs, real_labels)
        G_optimizer.zero_grad()
        G_loss.backward()
        G_optimizer.step()

        all_D_loss += D_loss.item()
        all_G_loss += G_loss.item()
        print('Epoch {}, d_loss: {:.6f}, g_loss: {:.6f} '
              'D real: {:.6f}, D fake: {:.6f}'.format
              (epoch, all_D_loss/(batch_idx+1), all_G_loss/(batch_idx+1),
               torch.mean(real_outputs), torch.mean(fake_outputs)))

    # Save generated images for every epoch
    fake_images = to_img(fake_img)
    save_image(fake_images, 'MNIST_FAKE/fake_images-{}.png'.format(epoch + 1))


for epoch in range(40):
    train(epoch)
    
torch.save(G.state_dict(), './generator.pth')
torch.save(D.state_dict(), './discriminator.pth')

运行40轮得到的结果:
在这里插入图片描述
在训练完之后,可以得到generator的参数,可以将其单独剥离出来进行图像生成。此时,给generator任意生成的符合先验分布的噪声向量,就会生成对应的图片:

import torch
import torch.nn as nn
from torchvision.utils import save_image

z_dimension = 100  # the dimension of noise tensor


class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        self.gen = nn.Sequential(
            nn.Linear(z_dimension, 256),
            nn.ReLU(True),
            nn.Linear(256, 256),
            nn.ReLU(True),
            nn.Linear(256, 784),
            nn.Tanh()
        )

    def forward(self, x):
        x = self.gen(x)
        return x

def to_img(x):
    out = 0.5 * (x + 1)
    out = out.view(-1, 1, 28, 28)
    return out


G = Generator().to('cpu')
G.load_state_dict(torch.load('./generator.pth'))


def generate_synthetic_images(num_img):
    G.eval()
    z = torch.randn((num_img, z_dimension))
    fake_img = G(z)

    fake_images = to_img(fake_img)
    print(fake_img)
    save_image(fake_images, 'MNIST_GEN/synthetic_images.png')


if __name__ == '__main__':
    generate_synthetic_images(100)

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值