Transformers 源码解析(三百零五)

.\utils\__init__.py

# 指定 Python 解释器的路径,使得脚本可以在环境中独立运行
#!/usr/bin/env python
# 设置脚本的字符编码为 UTF-8
# coding=utf-8

# 版权声明和许可证信息,该脚本遵循 Apache 许可证版本 2.0
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# 导入所需模块和函数

from huggingface_hub import get_full_repo_name  # 用于向后兼容
from huggingface_hub.constants import HF_HUB_DISABLE_TELEMETRY as DISABLE_TELEMETRY  # 用于向后兼容
from packaging import version

from .. import __version__  # 导入上层包的版本信息
from .backbone_utils import BackboneConfigMixin, BackboneMixin  # 导入本地模块中的类和函数
from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD  # 导入图像标准化常量
from .doc import (
    add_code_sample_docstrings,  # 导入用于文档注释的函数
    add_end_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    copy_func,
    replace_return_docstrings,
)
from .generic import (
    ContextManagers,  # 导入上下文管理器类
    ExplicitEnum,
    ModelOutput,
    PaddingStrategy,
    TensorType,
    add_model_info_to_auto_map,
    cached_property,
    can_return_loss,
    expand_dims,
    find_labels,
    flatten_dict,
    infer_framework,
    is_jax_tensor,
    is_numpy_array,
    is_tensor,
    is_tf_symbolic_tensor,
    is_tf_tensor,
    is_torch_device,
    is_torch_dtype,
    is_torch_tensor,
    reshape,
    squeeze,
    strtobool,
    tensor_size,
    to_numpy,
    to_py_obj,
    transpose,
    working_or_temp_dir,
)
from .hub import (
    CLOUDFRONT_DISTRIB_PREFIX,  # 导入与模型存储和缓存相关的常量和函数
    HF_MODULES_CACHE,
    HUGGINGFACE_CO_PREFIX,
    HUGGINGFACE_CO_RESOLVE_ENDPOINT,
    PYTORCH_PRETRAINED_BERT_CACHE,
    PYTORCH_TRANSFORMERS_CACHE,
    S3_BUCKET_PREFIX,
    TRANSFORMERS_CACHE,
    TRANSFORMERS_DYNAMIC_MODULE_NAME,
    EntryNotFoundError,
    PushInProgress,
    PushToHubMixin,
    RepositoryNotFoundError,
    RevisionNotFoundError,
    cached_file,
    default_cache_path,
    define_sagemaker_information,
    download_url,
    extract_commit_hash,
    get_cached_models,
    get_file_from_repo,
    has_file,
    http_user_agent,
    is_offline_mode,
    is_remote_url,
    move_cache,
    send_example_telemetry,
    try_to_load_from_cache,
)
from .import_utils import (
    ACCELERATE_MIN_VERSION,  # 导入与外部库依赖相关的版本要求和工具函数
    ENV_VARS_TRUE_AND_AUTO_VALUES,
    ENV_VARS_TRUE_VALUES,
    TORCH_FX_REQUIRED_VERSION,
    USE_JAX,
    USE_TF,
    USE_TORCH,
    DummyObject,
    OptionalDependencyNotAvailable,
    _LazyModule,
    ccl_version,
    direct_transformers_import,
    get_torch_version,
    is_accelerate_available,
    is_apex_available,
    is_aqlm_available,
    is_auto_awq_available,
    # 检查是否自动加载 GPT-3.5 或更高版本的问答功能可用
    is_auto_gptq_available,
    # 检查是否安装了 bitsandbytes 库
    is_bitsandbytes_available,
    # 检查是否安装了 BeautifulSoup4 库
    is_bs4_available,
    # 检查是否安装了 coloredlogs 库
    is_coloredlogs_available,
    # 检查是否安装了 OpenCV2 库
    is_cv2_available,
    # 检查是否安装了 Cython 编译器
    is_cython_available,
    # 检查是否安装了 datasets 库
    is_datasets_available,
    # 检查是否安装了 Decord 库
    is_decord_available,
    # 检查是否安装了 Detectron2 库
    is_detectron2_available,
    # 检查是否安装了 Essentia 库
    is_essentia_available,
    # 检查是否安装了 Faiss 库
    is_faiss_available,
    # 检查是否安装了 Flash Attn 2.x 库
    is_flash_attn_2_available,
    # 检查是否安装了 Flash Attn 2.10 或更高版本
    is_flash_attn_greater_or_equal_2_10,
    # 检查是否安装了 Flax 库
    is_flax_available,
    # 检查是否安装了 FSDP 库
    is_fsdp_available,
    # 检查是否安装了 ftfy 库
    is_ftfy_available,
    # 检查是否安装了 g2p_en 库
    is_g2p_en_available,
    # 检查是否安装了 GaloreTorch 库
    is_galore_torch_available,
    # 检查是否在笔记本环境中运行
    is_in_notebook,
    # 检查是否安装了 Intel Extension for PyTorch (IPEX)
    is_ipex_available,
    # 检查是否安装了 Jinja2 模板引擎
    is_jinja_available,
    # 检查是否安装了 Juman++ 库
    is_jumanpp_available,
    # 检查是否安装了 KenLM 库
    is_kenlm_available,
    # 检查是否安装了 Keras NLP 库
    is_keras_nlp_available,
    # 检查是否安装了 Levenshtein 库
    is_levenshtein_available,
    # 检查是否安装了 librosa 库
    is_librosa_available,
    # 检查是否安装了 MLX 库
    is_mlx_available,
    # 检查是否安装了 N-ATTEN 库
    is_natten_available,
    # 检查是否安装了 Ninja 编译器
    is_ninja_available,
    # 检查是否安装了 NLTK 库
    is_nltk_available,
    # 检查是否安装了 ONNX 运行时
    is_onnx_available,
    # 检查是否安装了 OpenAI 库
    is_openai_available,
    # 检查是否安装了 Optimum 库
    is_optimum_available,
    # 检查是否安装了 pandas 库
    is_pandas_available,
    # 检查是否安装了 PEFT 库
    is_peft_available,
    # 检查是否安装了 Phonemizer 库
    is_phonemizer_available,
    # 检查是否安装了 PrettyMIDI 库
    is_pretty_midi_available,
    # 检查是否安装了 Protocol Buffers 库
    is_protobuf_available,
    # 检查是否安装了 psutil 库
    is_psutil_available,
    # 检查是否安装了 Py3nvml 库
    is_py3nvml_available,
    # 检查是否安装了 PyCTCDecode 库
    is_pyctcdecode_available,
    # 检查是否安装了 PyTesseract 库
    is_pytesseract_available,
    # 检查是否安装了 pytest 测试框架
    is_pytest_available,
    # 检查是否支持 PyTorch 量化
    is_pytorch_quantization_available,
    # 检查是否安装了 Quanto 库
    is_quanto_available,
    # 检查是否安装了 rjieba 库
    is_rjieba_available,
    # 检查是否安装了 Sacremoses 库
    is_sacremoses_available,
    # 检查是否支持 SafeTensors 库
    is_safetensors_available,
    # 检查 SageMaker 是否启用了分布式训练
    is_sagemaker_dp_enabled,
    # 检查 SageMaker 是否启用了多进程训练
    is_sagemaker_mp_enabled,
    # 检查是否安装了 SciPy 库
    is_scipy_available,
    # 检查是否安装了 SentencePiece 库
    is_sentencepiece_available,
    # 检查是否安装了 SeqIO 库
    is_seqio_available,
    # 检查是否安装了 scikit-learn 库
    is_sklearn_available,
    # 检查是否安装了 SoundFile 库
    is_soundfile_availble,
    # 检查是否安装了 spaCy 库
    is_spacy_available,
    # 检查是否支持语音处理库
    is_speech_available,
    # 检查是否安装了 Sudachi 分词器
    is_sudachi_available,
    # 检查是否安装了 SudachiProjection 库
    is_sudachi_projection_available,
    # 检查是否支持 TensorFlow Probability 库
    is_tensorflow_probability_available,
    # 检查是否支持 TensorFlow Text 库
    is_tensorflow_text_available,
    # 检查是否支持 TF2ONNX 库
    is_tf2onnx_available,
    # 检查是否支持 TensorFlow 库
    is_tf_available,
    # 检查是否安装了 timm 库
    is_timm_available,
    # 检查是否支持 Tokenizers 库
    is_tokenizers_available,
    # 检查是否支持 PyTorch 库
    is_torch_available,
    # 检查是否在设备上支持 BF16 操作
    is_torch_bf16_available_on_device,
    # 检查是否在 CPU 上支持 BF16 操作
    is_torch_bf16_cpu_available,
    # 检查是否在 GPU 上支持 BF16 操作
    is_torch_bf16_gpu_available,
    # 检查是否支持 PyTorch 编译器
    is_torch_compile_available,
    # 检查是否支持 PyTorch CUDA
    is_torch_cuda_available,
    # 检查是否在设备上支持 FP16 操作
    is_torch_fp16_available_on_device,
    # 检查是否支持 PyTorch FX
    is_torch_fx_available,
    # 检查是否支持 PyTorch FX 代理
    is_torch_fx_proxy,
    # 检查是否支持 PyTorch MPS
    is_torch_mps_available,
    # 检查是否支持 PyTorch NeuronCore
    is_torch_neuroncore_available,
    # 检查是否支持 PyTorch NPU
    is_torch_npu_available,
    # 检查是否支持 PyTorch SDPA
    is_torch_sdpa_available,
    # 检查是否支持 PyTorch TensorRT FX
    is_torch_tensorrt_fx_available,
    # 检查是否支持 PyTorch TF32
    is_torch_tf32_available,
    # 检查是否支持 PyTorch TPU
    is_torch_tpu_available,
    # 检查是否支持 PyTorch XLA
    is_torch_xla_available,
    # 检查是否支持 PyTorch XPU
    is_torch_xpu_available,
    # 检查是否安装了 torchaudio 库
    is_torchaudio_available,
    # 检查是否支持 TorchDistX 库
    is_torchdistx_available,
    # 检查是否支持 TorchDynamo 库
    is_torchdynamo_available,
    # 检查 TorchDynamo 是否正在编译
    is_torchdynamo_compiling,
    # 检查是否安装了 torchvision 库
    is_torchvision_available,
    # 检查是否在 SageMaker 上运行训练任务
    is_training_run_on_sagemaker,
    # 检查所需的后端是否安装
    requires_backends,
    # 检查是否为 Torch 专用方法
    torch_only_method,
# 导入所需模块和变量
from .peft_utils import (
    ADAPTER_CONFIG_NAME,      # 导入适配器配置名称常量
    ADAPTER_SAFE_WEIGHTS_NAME,  # 导入适配器安全权重名称常量
    ADAPTER_WEIGHTS_NAME,     # 导入适配器权重名称常量
    check_peft_version,       # 导入检查 PEFT 版本函数
    find_adapter_config_file,  # 导入查找适配器配置文件函数
)

# 定义模型权重文件名常量
WEIGHTS_NAME = "pytorch_model.bin"
WEIGHTS_INDEX_NAME = "pytorch_model.bin.index.json"
TF2_WEIGHTS_NAME = "tf_model.h5"
TF2_WEIGHTS_INDEX_NAME = "tf_model.h5.index.json"
TF_WEIGHTS_NAME = "model.ckpt"
FLAX_WEIGHTS_NAME = "flax_model.msgpack"
FLAX_WEIGHTS_INDEX_NAME = "flax_model.msgpack.index.json"
SAFE_WEIGHTS_NAME = "model.safetensors"
SAFE_WEIGHTS_INDEX_NAME = "model.safetensors.index.json"
CONFIG_NAME = "config.json"
FEATURE_EXTRACTOR_NAME = "preprocessor_config.json"
IMAGE_PROCESSOR_NAME = FEATURE_EXTRACTOR_NAME
PROCESSOR_NAME = "processor_config.json"
GENERATION_CONFIG_NAME = "generation_config.json"
MODEL_CARD_NAME = "modelcard.json"

SENTENCEPIECE_UNDERLINE = "▁"
SPIECE_UNDERLINE = SENTENCEPIECE_UNDERLINE  # 为了向后兼容保留了这个变量

# 定义用于多选问题的虚拟输入数据,XLM 使用它来表示语言
MULTIPLE_CHOICE_DUMMY_INPUTS = [
    [[0, 1, 0, 1], [1, 0, 0, 1]]
] * 2  # 需要仅包含 0 和 1,因为 XLM 用它来表示语言
# 定义虚拟输入数据
DUMMY_INPUTS = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
# 定义虚拟掩码数据
DUMMY_MASK = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]]


def check_min_version(min_version):
    # 检查当前安装的 Transformers 版本是否满足最小版本要求
    if version.parse(__version__) < version.parse(min_version):
        if "dev" in min_version:
            # 如果是开发版,生成错误信息
            error_message = (
                "This example requires a source install from HuggingFace Transformers (see "
                "`https://huggingface.co/docs/transformers/installation#install-from-source`),"
            )
        else:
            # 如果是稳定版,生成错误信息
            error_message = f"This example requires a minimum version of {min_version},"
        # 添加当前版本信息到错误信息
        error_message += f" but the version found is {__version__}.\n"
        # 抛出导入错误,包含详细信息和引导链接
        raise ImportError(
            error_message
            + "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other "
            "versions of HuggingFace Transformers."
        )

.\__init__.py

`
# 版权声明和许可证信息,指明代码的使用和分发条件
# 版本号定义
__version__ = "4.39.0"

# 导入必要的类型检查模块
from typing import TYPE_CHECKING

# 导入依赖版本检查模块
from . import dependency_versions_check
# 导入工具函数和异常类
from .utils import (
    OptionalDependencyNotAvailable,
    _LazyModule,
    is_bitsandbytes_available,
    is_essentia_available,
    is_flax_available,
    is_g2p_en_available,
    is_keras_nlp_available,
    is_librosa_available,
    is_pretty_midi_available,
    is_scipy_available,
    is_sentencepiece_available,
    is_speech_available,
    is_tensorflow_text_available,
    is_tf_available,
    is_timm_available,
    is_tokenizers_available,
    is_torch_available,
    is_torchaudio_available,
    is_torchvision_available,
    is_vision_available,
    logging,
)

# 获取日志记录器对象
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

# 定义导入结构,用于延迟实际导入
# 这些对象将在被请求时导入,而不是立即导入
_import_structure = {
    "audio_utils": [],
    "benchmark": [],
    "commands": [],
    "configuration_utils": ["PretrainedConfig"],
    "convert_graph_to_onnx": [],
    "convert_slow_tokenizers_checkpoints_to_fast": [],
    "convert_tf_hub_seq_to_seq_bert_to_pytorch": [],
    "data": [
        "DataProcessor",
        "InputExample",
        "InputFeatures",
        "SingleSentenceClassificationProcessor",
        "SquadExample",
        "SquadFeatures",
        "SquadV1Processor",
        "SquadV2Processor",
        "glue_compute_metrics",
        "glue_convert_examples_to_features",
        "glue_output_modes",
        "glue_processors",
        "glue_tasks_num_labels",
        "squad_convert_examples_to_features",
        "xnli_compute_metrics",
        "xnli_output_modes",
        "xnli_processors",
        "xnli_tasks_num_labels",
    ],
    # 定义了数据处理相关的类名称列表
    "data.data_collator": [
        "DataCollator",
        "DataCollatorForLanguageModeling",
        "DataCollatorForPermutationLanguageModeling",
        "DataCollatorForSeq2Seq",
        "DataCollatorForSOP",
        "DataCollatorForTokenClassification",
        "DataCollatorForWholeWordMask",
        "DataCollatorWithPadding",
        "DefaultDataCollator",
        "default_data_collator",
    ],
    # 空列表,未包含任何数据指标
    "data.metrics": [],
    # 空列表,未包含任何数据处理器
    "data.processors": [],
    # 空列表,未包含任何调试工具相关的内容
    "debug_utils": [],
    # 空列表,未包含任何 DeepSpeed 相关的内容
    "deepspeed": [],
    # 空列表,未包含任何依赖版本检查相关的内容
    "dependency_versions_check": [],
    # 空列表,未包含任何依赖版本表格相关的内容
    "dependency_versions_table": [],
    # 空列表,未包含任何动态模块工具相关的内容
    "dynamic_module_utils": [],
    # 定义了特征提取序列工具类名称列表
    "feature_extraction_sequence_utils": ["SequenceFeatureExtractor"],
    # 定义了特征提取工具类名称列表
    "feature_extraction_utils": ["BatchFeature", "FeatureExtractionMixin"],
    # 空列表,未包含任何文件工具相关的内容
    "file_utils": [],
    # 定义了生成任务相关的类名称列表
    "generation": ["GenerationConfig", "TextIteratorStreamer", "TextStreamer"],
    # 定义了 Hugging Face 参数解析器类名称列表
    "hf_argparser": ["HfArgumentParser"],
    # 空列表,未包含任何超参数搜索相关的内容
    "hyperparameter_search": [],
    # 空列表,未包含任何图像变换相关的内容
    "image_transforms": [],
    # 定义了集成工具是否可用的函数名称列表
    "integrations": [
        "is_clearml_available",
        "is_comet_available",
        "is_dvclive_available",
        "is_neptune_available",
        "is_optuna_available",
        "is_ray_available",
        "is_ray_tune_available",
        "is_sigopt_available",
        "is_tensorboard_available",
        "is_wandb_available",
    ],
    # 定义了模型卡片相关的类名称列表
    "modelcard": ["ModelCard"],
    # 定义了 TensorFlow 和 PyTorch 模型工具类名称列表
    "modeling_tf_pytorch_utils": [
        "convert_tf_weight_name_to_pt_weight_name",
        "load_pytorch_checkpoint_in_tf2_model",
        "load_pytorch_model_in_tf2_model",
        "load_pytorch_weights_in_tf2_model",
        "load_tf2_checkpoint_in_pytorch_model",
        "load_tf2_model_in_pytorch_model",
        "load_tf2_weights_in_pytorch_model",
    ],
    # 空列表,未包含任何模型相关的内容
    "models": [],
    # 定义了 Albert 模型相关的类名称列表和预训练配置映射
    "models.albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig"],
    # 定义了 Align 模型相关的类名称列表和预训练配置映射
    "models.align": [
        "ALIGN_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "AlignConfig",
        "AlignProcessor",
        "AlignTextConfig",
        "AlignVisionConfig",
    ],
    # 定义了 AltCLIP 模型相关的类名称列表和预训练配置映射
    "models.altclip": [
        "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "AltCLIPConfig",
        "AltCLIPProcessor",
        "AltCLIPTextConfig",
        "AltCLIPVisionConfig",
    ],
    # 定义了 Audio Spectrogram Transformer 模型相关的类名称列表和预训练配置映射
    "models.audio_spectrogram_transformer": [
        "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "ASTConfig",
        "ASTFeatureExtractor",
    ],
    # 定义了 Auto 模型相关的类名称列表和预训练配置映射
    "models.auto": [
        "ALL_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "CONFIG_MAPPING",
        "FEATURE_EXTRACTOR_MAPPING",
        "IMAGE_PROCESSOR_MAPPING",
        "MODEL_NAMES_MAPPING",
        "PROCESSOR_MAPPING",
        "TOKENIZER_MAPPING",
        "AutoConfig",
        "AutoFeatureExtractor",
        "AutoImageProcessor",
        "AutoProcessor",
        "AutoTokenizer",
    ],
    # 定义了 Autoformer 模型相关的类名称列表和预训练配置映射
    "models.autoformer": [
        "AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "AutoformerConfig",
    ],
    "models.bark": [
        "BarkCoarseConfig",  # 定义了模块 'models.bark' 下的 'BarkCoarseConfig' 类
        "BarkConfig",  # 定义了模块 'models.bark' 下的 'BarkConfig' 类
        "BarkFineConfig",  # 定义了模块 'models.bark' 下的 'BarkFineConfig' 类
        "BarkProcessor",  # 定义了模块 'models.bark' 下的 'BarkProcessor' 类
        "BarkSemanticConfig",  # 定义了模块 'models.bark' 下的 'BarkSemanticConfig' 类
    ],
    "models.bart": ["BartConfig", "BartTokenizer"],  # 定义了模块 'models.bart' 下的 'BartConfig' 类和 'BartTokenizer' 类
    "models.barthez": [],  # 'models.barthez' 模块为空,没有类或对象定义
    "models.bartpho": [],  # 'models.bartpho' 模块为空,没有类或对象定义
    "models.beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig"],  # 定义了模块 'models.beit' 下的 'BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP' 对象和 'BeitConfig' 类
    "models.bert": [
        "BERT_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 定义了模块 'models.bert' 下的 'BERT_PRETRAINED_CONFIG_ARCHIVE_MAP' 对象
        "BasicTokenizer",  # 定义了模块 'models.bert' 下的 'BasicTokenizer' 类
        "BertConfig",  # 定义了模块 'models.bert' 下的 'BertConfig' 类
        "BertTokenizer",  # 定义了模块 'models.bert' 下的 'BertTokenizer' 类
        "WordpieceTokenizer",  # 定义了模块 'models.bert' 下的 'WordpieceTokenizer' 类
    ],
    "models.bert_generation": ["BertGenerationConfig"],  # 定义了模块 'models.bert_generation' 下的 'BertGenerationConfig' 类
    "models.bert_japanese": [
        "BertJapaneseTokenizer",  # 定义了模块 'models.bert_japanese' 下的 'BertJapaneseTokenizer' 类
        "CharacterTokenizer",  # 定义了模块 'models.bert_japanese' 下的 'CharacterTokenizer' 类
        "MecabTokenizer",  # 定义了模块 'models.bert_japanese' 下的 'MecabTokenizer' 类
    ],
    "models.bertweet": ["BertweetTokenizer"],  # 定义了模块 'models.bertweet' 下的 'BertweetTokenizer' 类
    "models.big_bird": ["BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdConfig"],  # 定义了模块 'models.big_bird' 下的 'BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP' 对象和 'BigBirdConfig' 类
    "models.bigbird_pegasus": [
        "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 定义了模块 'models.bigbird_pegasus' 下的 'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP' 对象
        "BigBirdPegasusConfig",  # 定义了模块 'models.bigbird_pegasus' 下的 'BigBirdPegasusConfig' 类
    ],
    "models.biogpt": [
        "BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 定义了模块 'models.biogpt' 下的 'BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP' 对象
        "BioGptConfig",  # 定义了模块 'models.biogpt' 下的 'BioGptConfig' 类
        "BioGptTokenizer",  # 定义了模块 'models.biogpt' 下的 'BioGptTokenizer' 类
    ],
    "models.bit": ["BIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BitConfig"],  # 定义了模块 'models.bit' 下的 'BIT_PRETRAINED_CONFIG_ARCHIVE_MAP' 对象和 'BitConfig' 类
    "models.blenderbot": [
        "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 定义了模块 'models.blenderbot' 下的 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP' 对象
        "BlenderbotConfig",  # 定义了模块 'models.blenderbot' 下的 'BlenderbotConfig' 类
        "BlenderbotTokenizer",  # 定义了模块 'models.blenderbot' 下的 'BlenderbotTokenizer' 类
    ],
    "models.blenderbot_small": [
        "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 定义了模块 'models.blenderbot_small' 下的 'BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP' 对象
        "BlenderbotSmallConfig",  # 定义了模块 'models.blenderbot_small' 下的 'BlenderbotSmallConfig' 类
        "BlenderbotSmallTokenizer",  # 定义了模块 'models.blenderbot_small' 下的 'BlenderbotSmallTokenizer' 类
    ],
    "models.blip": [
        "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 定义了模块 'models.blip' 下的 'BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP' 对象
        "BlipConfig",  # 定义了模块 'models.blip' 下的 'BlipConfig' 类
        "BlipProcessor",  # 定义了模块 'models.blip' 下的 'BlipProcessor' 类
        "BlipTextConfig",  # 定义了模块 'models.blip' 下的 'BlipTextConfig' 类
        "BlipVisionConfig",  # 定义了模块 'models.blip' 下的 'BlipVisionConfig' 类
    ],
    "models.blip_2": [
        "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 定义了模块 'models.blip_2' 下的 'BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP' 对象
        "Blip2Config",  # 定义了模块 'models.blip_2' 下的 'Blip2Config' 类
        "Blip2Processor",  # 定义了模块 'models.blip_2' 下的 'Blip2Processor' 类
        "Blip2QFormerConfig",  # 定义了模块 'models.blip_2' 下的 'Blip2QFormerConfig' 类
        "Blip2VisionConfig",  # 定义了模块 'models.blip_2' 下的 'Blip2VisionConfig' 类
    ],
    "models.bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig"],  # 定义了模块 'models.bloom' 下的 'BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP' 对象和 'BloomConfig' 类
    "models.bridgetower": [
        "BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 定义了模块 'models.bridgetower' 下的 'BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP' 对象
        "BridgeTowerConfig",  # 定义了模块 'models.bridgetower' 下的 'BridgeTowerConfig' 类
        "BridgeTowerProcessor",  # 定义了模块 'models.bridgetower' 下的 'BridgeTowerProcessor' 类
        "BridgeTowerTextConfig",  # 定义了模块 'models.bridgetower' 下的 'BridgeTowerTextConfig' 类
        "BridgeTowerVisionConfig",  # 定义了模块 'models.bridgetower' 下的 'BridgeTowerVisionConfig' 类
    ],
    "models.bros": [
        "BROS_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 定义了模块 'models.bros' 下的 'BROS_PRETRAINED_CONFIG_ARCHIVE_MAP' 对象
        "BrosConfig",  # 定义了模块 'models.bros' 下的 'BrosConfig' 类
        "BrosProcessor",  # 定义了模块 'models.bros' 下的 'BrosProcessor' 类
    ],
    "models.byt5": ["ByT5Tokenizer"],  # 定义了模块 'models.byt5' 下的 'ByT5Tokenizer' 类
    "models.camembert": ["CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CamembertConfig"],  # 定义了模块 'models.camembert' 下的 'CAMEMBERT_PRETRAINED
    "models.clip": [
        "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "CLIPConfig",
        "CLIPProcessor",
        "CLIPTextConfig",
        "CLIPTokenizer",
        "CLIPVisionConfig",
    ],
    "models.clipseg": [
        "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "CLIPSegConfig",
        "CLIPSegProcessor",
        "CLIPSegTextConfig",
        "CLIPSegVisionConfig",
    ],
    "models.clvp": [
        "CLVP_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "ClvpConfig",
        "ClvpDecoderConfig",
        "ClvpEncoderConfig",
        "ClvpFeatureExtractor",
        "ClvpProcessor",
        "ClvpTokenizer",
    ],
    "models.code_llama": [],
    "models.codegen": [
        "CODEGEN_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "CodeGenConfig",
        "CodeGenTokenizer",
    ],
    "models.cohere": ["COHERE_PRETRAINED_CONFIG_ARCHIVE_MAP", "CohereConfig"],
    "models.conditional_detr": [
        "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "ConditionalDetrConfig",
    ],
    "models.convbert": [
        "CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "ConvBertConfig",
        "ConvBertTokenizer",
    ],
    "models.convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig"],
    "models.convnextv2": [
        "CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "ConvNextV2Config",
    ],
    "models.cpm": [],
    "models.cpmant": [
        "CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "CpmAntConfig",
        "CpmAntTokenizer",
    ],
    "models.ctrl": [
        "CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "CTRLConfig",
        "CTRLTokenizer",
    ],
    "models.cvt": ["CVT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CvtConfig"],
    "models.data2vec": [
        "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "Data2VecAudioConfig",
        "Data2VecTextConfig",
        "Data2VecVisionConfig",
    ],
    "models.deberta": [
        "DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "DebertaConfig",
        "DebertaTokenizer",
    ],
    "models.deberta_v2": [
        "DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "DebertaV2Config",
    ],
    "models.decision_transformer": [
        "DECISION_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "DecisionTransformerConfig",
    ],
    "models.deformable_detr": [
        "DEFORMABLE_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "DeformableDetrConfig",
    ],
    "models.deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig"],
    "models.deprecated": [],
    "models.deprecated.bort": [],
    "models.deprecated.mctct": [
        "MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "MCTCTConfig",
        "MCTCTFeatureExtractor",
        "MCTCTProcessor",
    ],
    "models.deprecated.mmbt": ["MMBTConfig"],
    "models.deprecated.open_llama": [
        "OPEN_LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "OpenLlamaConfig",
    ],


注释:

    "models.clip": [
        "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",  # CLIP 模型预训练配置文件映射
        "CLIPConfig",                         # CLIP 模型配置
        "CLIPProcessor",                      # CLIP 模型处理器
        "CLIPTextConfig",                     # CLIP 文本配置
        "CLIPTokenizer",                      # CLIP 分词器
        "CLIPVisionConfig",                   # CLIP 视觉配置
    ],
    "models.clipseg": [
        "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP",  # CLIPSeg 模型预训练配置文件映射
        "CLIPSegConfig",                         # CLIPSeg 模型配置
        "CLIPSegProcessor",                      # CLIPSeg 模型处理器
        "CLIPSegTextConfig",                     # CLIPSeg 文本配置
        "CLIPSegVisionConfig",                   # CLIPSeg 视觉配置
    ],
    "models.clvp": [
        "CLVP_PRETRAINED_CONFIG_ARCHIVE_MAP",   # CLVP 模型预训练配置文件映射
        "ClvpConfig",                           # CLVP 模型配置
        "ClvpDecoderConfig",                    # CLVP 解码器配置
        "ClvpEncoderConfig",                    # CLVP 编码器配置
        "ClvpFeatureExtractor",                 # CLVP 特征提取器
        "ClvpProcessor",                        # CLVP 模型处理器
        "ClvpTokenizer",                        # CLVP 分词器
    ],
    "models.code_llama": [],                    # Code LLAMA 模型为空列表
    "models.codegen": [
        "CODEGEN_PRETRAINED_CONFIG_ARCHIVE_MAP",  # CodeGen 模型预训练配置文件映射
        "CodeGenConfig",                         # CodeGen 模型配置
        "CodeGenTokenizer",                      # CodeGen 分词器
    ],
    "models.cohere": ["COHERE_PRETRAINED_CONFIG_ARCHIVE_MAP", "CohereConfig"],  # Cohere 模型预训练配置文件映射和配置
    "models.conditional_detr": [
        "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP",  # Conditional DETR 模型预训练配置文件映射
        "ConditionalDetrConfig",                          # Conditional DETR 模型配置
    ],
    "models.convbert": [
        "CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",  # ConvBERT 模型预训练配置文件映射
        "ConvBertConfig",                          # ConvBERT 模型配置
        "ConvBertTokenizer",                       # ConvBERT 分词器
    ],
    "models.convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig"],  # ConvNext 模型预训练配置文件映射和配置
    "models.convnextv2": [
        "CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP",  # ConvNextV2 模型预训练配置文件映射
        "ConvNextV2Config",                          # ConvNextV2 模型配置
    ],
    "models.cpm": [],  # CPM 模型为空列表
    "models.cpmant": [
        "CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP",  # CpmAnt 模型预训练配置文件映射
        "CpmAntConfig",                          # CpmAnt 模型配置
        "CpmAntTokenizer",                       # CpmAnt 分词器
    ],
    "models.ctrl": [
        "CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP",  # CTRL 模型预训练配置文件映射
        "CTRLConfig",                          # CTRL 模型配置
        "CTRLTokenizer",                       # CTRL 分词器
    ],
    "models.cvt": ["CVT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CvtConfig"],  # CVT 模型预训练配置文件映射和配置
    "models.data2vec": [
        "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP",    # Data2Vec 文本预训练配置文件映射
        "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP",  # Data2Vec 视觉预训练配置文件映射
        "Data2VecAudioConfig",                           # Data2Vec 音频配置
        "Data2VecTextConfig",                            # Data2Vec 文本配置
        "Data2VecVisionConfig",                          # Data2Vec 视觉配置
    ],
    "models.deberta": [
        "DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP",  # Deberta 模型预训练配置文件映射
        "DebertaConfig",                          # Deberta 模型配置
        "DebertaTokenizer",                       # Deberta 分词器
    ],
    "models.deberta_v2": [
        "DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP",  # DebertaV2 模型预训练配置文件映射
        "DebertaV2Config",                          # DebertaV2 模型配置
    ],
    "models.decision_transformer": [
        "DECISION_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",  # Decision Transformer 模型预训练配置文件映射
        "DecisionTransformerConfig",                          # Decision Transformer 模型配置
    ],
    "models.deformable_d
    {
        "models.deprecated.retribert": [
            "RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
            "RetriBertConfig",
            "RetriBertTokenizer",
        ],
        "models.deprecated.tapex": ["TapexTokenizer"],
        "models.deprecated.trajectory_transformer": [
            "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
            "TrajectoryTransformerConfig",
        ],
        "models.deprecated.transfo_xl": [
            "TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP",
            "TransfoXLConfig",
            "TransfoXLCorpus",
            "TransfoXLTokenizer",
        ],
        "models.deprecated.van": ["VAN_PRETRAINED_CONFIG_ARCHIVE_MAP", "VanConfig"],
        "models.depth_anything": ["DEPTH_ANYTHING_PRETRAINED_CONFIG_ARCHIVE_MAP", "DepthAnythingConfig"],
        "models.deta": ["DETA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DetaConfig"],
        "models.detr": ["DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "DetrConfig"],
        "models.dialogpt": [],
        "models.dinat": ["DINAT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DinatConfig"],
        "models.dinov2": ["DINOV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Dinov2Config"],
        "models.distilbert": [
            "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
            "DistilBertConfig",
            "DistilBertTokenizer",
        ],
        "models.dit": [],
        "models.donut": [
            "DONUT_SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP",
            "DonutProcessor",
            "DonutSwinConfig",
        ],
        "models.dpr": [
            "DPR_PRETRAINED_CONFIG_ARCHIVE_MAP",
            "DPRConfig",
            "DPRContextEncoderTokenizer",
            "DPRQuestionEncoderTokenizer",
            "DPRReaderOutput",
            "DPRReaderTokenizer",
        ],
        "models.dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"],
        "models.efficientformer": [
            "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
            "EfficientFormerConfig",
        ],
        "models.efficientnet": [
            "EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP",
            "EfficientNetConfig",
        ],
        "models.electra": [
            "ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP",
            "ElectraConfig",
            "ElectraTokenizer",
        ],
        "models.encodec": [
            "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP",
            "EncodecConfig",
            "EncodecFeatureExtractor",
        ],
        "models.encoder_decoder": ["EncoderDecoderConfig"],
        "models.ernie": [
            "ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP",
            "ErnieConfig",
        ],
        "models.ernie_m": ["ERNIE_M_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieMConfig"],
        "models.esm": ["ESM_PRETRAINED_CONFIG_ARCHIVE_MAP", "EsmConfig", "EsmTokenizer"],
        "models.falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"],
        "models.fastspeech2_conformer": [
            "FASTSPEECH2_CONFORMER_HIFIGAN_PRETRAINED_CONFIG_ARCHIVE_MAP",
            "FASTSPEECH2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
            "FASTSPEECH2_CONFORMER_WITH_HIFIGAN_PRETRAINED_CONFIG_ARCHIVE_MAP",
            "FastSpeech2ConformerConfig",
            "FastSpeech2ConformerHifiGanConfig",
            "FastSpeech2ConformerTokenizer",
            "FastSpeech2ConformerWithHifiGanConfig",
        ],
    }
    
    
    注释:
    
    
    # models.deprecated.retribert 模块中的预训练配置映射、RetriBertConfig和RetriBertTokenizer类
    {
        "models.deprecated.retribert": [
            "RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 预训练配置映射
            "RetriBertConfig",  # RetriBertConfig类
            "RetriBertTokenizer",  # RetriBertTokenizer类
        ],
        # models.deprecated.tapex 模块中的TapexTokenizer类
        "models.deprecated.tapex": ["TapexTokenizer"],  # TapexTokenizer类
        # models.deprecated.trajectory_transformer 模块中的预训练配置映射和TrajectoryTransformerConfig类
        "models.deprecated.trajectory_transformer": [
            "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 预训练配置映射
            "TrajectoryTransformerConfig",  # TrajectoryTransformerConfig类
        ],
        # models.deprecated.transfo_xl 模块中的预训练配置映射、TransfoXLConfig类、TransfoXLCorpus类和TransfoXLTokenizer类
        "models.deprecated.transfo_xl": [
            "TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 预训练配置映射
            "TransfoXLConfig",  # TransfoXLConfig类
            "TransfoXLCorpus",  # TransfoXLCorpus类
            "TransfoXLTokenizer",  # TransfoXLTokenizer类
        ],
        # models.deprecated.van 模块中的预训练配置映射和VanConfig类
        "models.deprecated.van": ["VAN_PRETRAINED_CONFIG_ARCHIVE_MAP", "VanConfig"],  # 预训练配置映射和VanConfig类
        # models.depth_anything 模块中的预训练配置映射和DepthAnythingConfig类
        "models.depth_anything": ["DEPTH_ANYTHING_PRETRAINED_CONFIG_ARCHIVE_MAP", "DepthAnythingConfig"],  # 预训练配置映射和DepthAnythingConfig类
        # models.deta 模块中的预训练配置映射和DetaConfig类
        "models.deta": ["DETA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DetaConfig"],  # 预训练配置映射和DetaConfig类
        # models.detr 模块中的预训练配置映射和DetrConfig类
        "models.detr": ["DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "DetrConfig"],  # 预训练配置映射和DetrConfig类
        # models.dialogpt 模块为空,没有内容
        "models.dialogpt": [],  # 空列表,没有内容
        # models.dinat 模块中的预训练配置映射和DinatConfig类
        "models.dinat": ["DINAT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DinatConfig"],  # 预训练配置映射和DinatConfig类
        # models.dinov2 模块中的预训练配置映射和Dinov2Config类
        "models.dinov2": ["DINOV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Dinov2Config"],  # 预训练配置映射和Dinov2Config类
        # models.distilbert 模块中的预训练配置映射、DistilBertConfig类和DistilBertTokenizer类
        "models.distilbert": [
            "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 预训练配置映射
            "DistilBertConfig",  # DistilBertConfig类
            "DistilBertTokenizer",  # DistilBertTokenizer类
        ],
        # models.dit 模块为空,没有内容
        "models.dit": [],  # 空列表,没有内容
        # models.donut 模块中的DonutProcessor类、DonutSwinConfig类和预训练配置映射
        "models.donut": [
            "DONUT_SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 预训练配置映射
            "DonutProcessor",  # DonutProcessor类
            "DonutSwinConfig",  # DonutSwinConfig类
        ],
        # models.dpr 模块中的多个类和预训练配置映射
        "models.dpr": [
            "DPR_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 预训练配置映射
            "DPRConfig",  # DPRConfig类
            "DPRContextEncoderTokenizer",  # DPRContextEncoderTokenizer类
            "DPRQuestionEncoderTokenizer",  # DPRQuestionEncoderTokenizer类
            "DPRReaderOutput",  # DPRReaderOutput类
            "DPRReaderTokenizer",  # DPRReaderTokenizer类
        ],
        # models.dpt 模块中的预训练配置映射和DPTConfig
    ],
    # models.flaubert 模块下的常量和类名列表
    "models.flaubert": ["FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "FlaubertConfig", "FlaubertTokenizer"],
    # models.flava 模块下的常量和类名列表
    "models.flava": [
        "FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "FlavaConfig",
        "FlavaImageCodebookConfig",
        "FlavaImageConfig",
        "FlavaMultimodalConfig",
        "FlavaTextConfig",
    ],
    # models.fnet 模块下的常量和类名列表
    "models.fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"],
    # models.focalnet 模块下的常量和类名列表
    "models.focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"],
    # models.fsmt 模块下的常量和类名列表
    "models.fsmt": [
        "FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "FSMTConfig",
        "FSMTTokenizer",
    ],
    # models.funnel 模块下的常量和类名列表
    "models.funnel": [
        "FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "FunnelConfig",
        "FunnelTokenizer",
    ],
    # models.fuyu 模块下的常量和类名列表
    "models.fuyu": ["FUYU_PRETRAINED_CONFIG_ARCHIVE_MAP", "FuyuConfig"],
    # models.gemma 模块下的常量和类名列表
    "models.gemma": ["GEMMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "GemmaConfig"],
    # models.git 模块下的常量和类名列表
    "models.git": [
        "GIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "GitConfig",
        "GitProcessor",
        "GitVisionConfig",
    ],
    # models.glpn 模块下的常量和类名列表
    "models.glpn": ["GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP", "GLPNConfig"],
    # models.gpt2 模块下的常量和类名列表
    "models.gpt2": [
        "GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "GPT2Config",
        "GPT2Tokenizer",
    ],
    # models.gpt_bigcode 模块下的常量和类名列表
    "models.gpt_bigcode": [
        "GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "GPTBigCodeConfig",
    ],
    # models.gpt_neo 模块下的常量和类名列表
    "models.gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig"],
    # models.gpt_neox 模块下的常量和类名列表
    "models.gpt_neox": ["GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXConfig"],
    # models.gpt_neox_japanese 模块下的常量和类名列表
    "models.gpt_neox_japanese": [
        "GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "GPTNeoXJapaneseConfig",
    ],
    # models.gpt_sw3 模块下的空列表,无常量和类名
    "models.gpt_sw3": [],
    # models.gptj 模块下的常量和类名列表
    "models.gptj": ["GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTJConfig"],
    # models.gptsan_japanese 模块下的常量和类名列表
    "models.gptsan_japanese": [
        "GPTSAN_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "GPTSanJapaneseConfig",
        "GPTSanJapaneseTokenizer",
    ],
    # models.graphormer 模块下的常量和类名列表
    "models.graphormer": [
        "GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "GraphormerConfig",
    ],
    # models.groupvit 模块下的常量和类名列表
    "models.groupvit": [
        "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "GroupViTConfig",
        "GroupViTTextConfig",
        "GroupViTVisionConfig",
    ],
    # models.herbert 模块下的常量和类名列表
    "models.herbert": ["HerbertTokenizer"],
    # models.hubert 模块下的常量和类名列表
    "models.hubert": ["HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "HubertConfig"],
    # models.ibert 模块下的常量和类名列表
    "models.ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig"],
    # models.idefics 模块下的常量和类名列表
    "models.idefics": [
        "IDEFICS_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "IdeficsConfig",
    ],
    # models.imagegpt 模块下的常量和类名列表
    "models.imagegpt": ["IMAGEGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ImageGPTConfig"],
    # models.informer 模块下的常量和类名列表
    "models.informer": ["INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig"],
    # models.instructblip 模块下的常量和类名列表
    "models.instructblip": [
        "INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "InstructBlipConfig",
        "InstructBlipProcessor",
        "InstructBlipQFormerConfig",
        "InstructBlipVisionConfig",
    ],
    {
        "models.jukebox": [
            "JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 音乐盒预训练配置文件映射
            "JukeboxConfig",  # 音乐盒配置
            "JukeboxPriorConfig",  # 音乐盒先验配置
            "JukeboxTokenizer",  # 音乐盒分词器
            "JukeboxVQVAEConfig",  # 音乐盒VQ-VAE配置
        ],
        "models.kosmos2": [
            "KOSMOS2_PRETRAINED_CONFIG_ARCHIVE_MAP",  # Kosmos2预训练配置文件映射
            "Kosmos2Config",  # Kosmos2配置
            "Kosmos2Processor",  # Kosmos2处理器
        ],
        "models.layoutlm": [
            "LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP",  # LayoutLM预训练配置文件映射
            "LayoutLMConfig",  # LayoutLM配置
            "LayoutLMTokenizer",  # LayoutLM分词器
        ],
        "models.layoutlmv2": [
            "LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP",  # LayoutLMv2预训练配置文件映射
            "LayoutLMv2Config",  # LayoutLMv2配置
            "LayoutLMv2FeatureExtractor",  # LayoutLMv2特征提取器
            "LayoutLMv2ImageProcessor",  # LayoutLMv2图像处理器
            "LayoutLMv2Processor",  # LayoutLMv2处理器
            "LayoutLMv2Tokenizer",  # LayoutLMv2分词器
        ],
        "models.layoutlmv3": [
            "LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP",  # LayoutLMv3预训练配置文件映射
            "LayoutLMv3Config",  # LayoutLMv3配置
            "LayoutLMv3FeatureExtractor",  # LayoutLMv3特征提取器
            "LayoutLMv3ImageProcessor",  # LayoutLMv3图像处理器
            "LayoutLMv3Processor",  # LayoutLMv3处理器
            "LayoutLMv3Tokenizer",  # LayoutLMv3分词器
        ],
        "models.layoutxlm": ["LayoutXLMProcessor"],  # LayoutXLM处理器
        "models.led": [
            "LED_PRETRAINED_CONFIG_ARCHIVE_MAP",  # LED预训练配置文件映射
            "LEDConfig",  # LED配置
            "LEDTokenizer",  # LED分词器
        ],
        "models.levit": ["LEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",  # Levit预训练配置文件映射
                        "LevitConfig"],  # Levit配置
        "models.lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP",  # Lilt预训练配置文件映射
                        "LiltConfig"],  # Lilt配置
        "models.llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP",  # Llama预训练配置文件映射
                         "LlamaConfig"],  # Llama配置
        "models.llava": [
            "LLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP",  # Llava预训练配置文件映射
            "LlavaConfig",  # Llava配置
            "LlavaProcessor",  # Llava处理器
        ],
        "models.llava_next": [
            "LLAVA_NEXT_PRETRAINED_CONFIG_ARCHIVE_MAP",  # Llava Next预训练配置文件映射
            "LlavaNextConfig",  # Llava Next配置
            "LlavaNextProcessor",  # Llava Next处理器
        ],
        "models.longformer": [
            "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",  # Longformer预训练配置文件映射
            "LongformerConfig",  # Longformer配置
            "LongformerTokenizer",  # Longformer分词器
        ],
        "models.longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP",  # LongT5预训练配置文件映射
                          "LongT5Config"],  # LongT5配置
        "models.luke": [
            "LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP",  # LUKE预训练配置文件映射
            "LukeConfig",  # LUKE配置
            "LukeTokenizer",  # LUKE分词器
        ],
        "models.lxmert": [
            "LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP",  # LXMERT预训练配置文件映射
            "LxmertConfig",  # LXMERT配置
            "LxmertTokenizer",  # LXMERT分词器
        ],
        "models.m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP",  # M2M-100预训练配置文件映射
                           "M2M100Config"],  # M2M-100配置
        "models.mamba": ["MAMBA_PRETRAINED_CONFIG_ARCHIVE_MAP",  # Mamba预训练配置文件映射
                         "MambaConfig"],  # Mamba配置
        "models.marian": ["MarianConfig"],  # Marian配置
        "models.markuplm": [
            "MARKUPLM_PRETRAINED_CONFIG_ARCHIVE_MAP",  # MarkupLM预训练配置文件映射
            "MarkupLMConfig",  # MarkupLM配置
            "MarkupLMFeatureExtractor",  # MarkupLM特征提取器
            "MarkupLMProcessor",  # MarkupLM处理器
            "MarkupLMTokenizer",  # MarkupLM分词器
        ],
        "models.mask2former": [
            "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",  # Mask2Former预训练配置文件映射
            "Mask2FormerConfig",  # Mask2Former配置
        ],
        "models.maskformer": [
            "MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",  # MaskFormer预训练配置文件映射
            "MaskFormerConfig",  # MaskFormer配置
            "MaskFormerSwinConfig",  # MaskFormerSwin配置
        ],
        "models.mbart": ["MBartConfig"],  # MBart配置
        "models.mbart50": [],  # MBart50
        "models.mega": ["MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP",  # Mega预训练配置文件映射
                        "MegaConfig"],  # Mega配置
        "models.megatron_bert": [
            "MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP",  # Megatron BERT预训练配置文件映射
            "MegatronBertConfig",  # Megatron BERT配置
        ],
    }
    # 定义一个字典,包含了多个模型名称和它们对应的空列表
    {
        "models.megatron_gpt2": [],
        "models.mgp_str": [
            "MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 预训练配置文件映射
            "MgpstrConfig",  # MGPSTR 配置类
            "MgpstrProcessor",  # MGPSTR 处理器类
            "MgpstrTokenizer",  # MGPSTR 分词器类
        ],
        "models.mistral": [
            "MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 预训练配置文件映射
            "MistralConfig",  # Mistral 配置类
        ],
        "models.mixtral": [
            "MIXTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 预训练配置文件映射
            "MixtralConfig",  # Mixtral 配置类
        ],
        "models.mluke": [],  # mluke 模型,空列表
        "models.mobilebert": [
            "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 预训练配置文件映射
            "MobileBertConfig",  # MobileBERT 配置类
            "MobileBertTokenizer",  # MobileBERT 分词器类
        ],
        "models.mobilenet_v1": [
            "MOBILENET_V1_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 预训练配置文件映射
            "MobileNetV1Config",  # MobileNetV1 配置类
        ],
        "models.mobilenet_v2": [
            "MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 预训练配置文件映射
            "MobileNetV2Config",  # MobileNetV2 配置类
        ],
        "models.mobilevit": [
            "MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 预训练配置文件映射
            "MobileViTConfig",  # MobileViT 配置类
        ],
        "models.mobilevitv2": [
            "MOBILEVITV2_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 预训练配置文件映射
            "MobileViTV2Config",  # MobileViTV2 配置类
        ],
        "models.mpnet": [
            "MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 预训练配置文件映射
            "MPNetConfig",  # MPNet 配置类
            "MPNetTokenizer",  # MPNet 分词器类
        ],
        "models.mpt": [
            "MPT_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 预训练配置文件映射
            "MptConfig",  # MPT 配置类
        ],
        "models.mra": [
            "MRA_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 预训练配置文件映射
            "MraConfig",  # MRA 配置类
        ],
        "models.mt5": [
            "MT5Config",  # MT5 配置类
        ],
        "models.musicgen": [
            "MUSICGEN_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 预训练配置文件映射
            "MusicgenConfig",  # Musicgen 配置类
            "MusicgenDecoderConfig",  # Musicgen 解码器配置类
        ],
        "models.musicgen_melody": [
            "MUSICGEN_MELODY_PRETRAINED_MODEL_ARCHIVE_LIST",  # 预训练模型存档列表
            "MusicgenMelodyConfig",  # Musicgen Melody 配置类
            "MusicgenMelodyDecoderConfig",  # Musicgen Melody 解码器配置类
        ],
        "models.mvp": [
            "MvpConfig",  # MVP 配置类
            "MvpTokenizer",  # MVP 分词器类
        ],
        "models.nat": [
            "NAT_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 预训练配置文件映射
            "NatConfig",  # Nat 配置类
        ],
        "models.nezha": [
            "NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 预训练配置文件映射
            "NezhaConfig",  # Nezha 配置类
        ],
        "models.nllb": [],  # nllb 模型,空列表
        "models.nllb_moe": [
            "NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 预训练配置文件映射
            "NllbMoeConfig",  # NLLB MOE 配置类
        ],
        "models.nougat": [
            "NougatProcessor",  # Nougat 处理器类
        ],
        "models.nystromformer": [
            "NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 预训练配置文件映射
            "NystromformerConfig",  # Nystromformer 配置类
        ],
        "models.oneformer": [
            "ONEFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 预训练配置文件映射
            "OneFormerConfig",  # Oneformer 配置类
            "OneFormerProcessor",  # Oneformer 处理器类
        ],
        "models.openai": [
            "OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 预训练配置文件映射
            "OpenAIGPTConfig",  # OpenAI GPT 配置类
            "OpenAIGPTTokenizer",  # OpenAI GPT 分词器类
        ],
        "models.opt": [
            "OPTConfig",  # OPT 配置类
        ],
        "models.owlv2": [
            "OWLV2_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 预训练配置文件映射
            "Owlv2Config",  # Owlv2 配置类
            "Owlv2Processor",  # Owlv2 处理器类
            "Owlv2TextConfig",  # Owlv2 文本配置类
            "Owlv2VisionConfig",  # Owlv2 视觉配置类
        ],
        "models.owlvit": [
            "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 预训练配置文件映射
            "OwlViTConfig",  # Owlvit 配置类
            "OwlViTProcessor",  # Owlvit 处理器类
            "OwlViTTextConfig",  # Owlvit 文本配置类
            "OwlViTVisionConfig",  # Owlvit 视觉配置类
        ],
        "models.patchtsmixer": [
            "PATCHTSMIXER_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 预训练配置文件映射
            "PatchTSMixerConfig",  # PatchTSMixer 配置类
        ],
        "models.patchtst": [
            "PATCHTST_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 预训练配置文件映射
            "PatchTSTConfig",  # PatchTST 配置类
        ],
    }
    "models.pegasus": [
        "PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "PegasusConfig",
        "PegasusTokenizer",
    ],
    "models.pegasus_x": ["PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusXConfig"],
    "models.perceiver": [
        "PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "PerceiverConfig",
        "PerceiverTokenizer",
    ],
    "models.persimmon": ["PERSIMMON_PRETRAINED_CONFIG_ARCHIVE_MAP", "PersimmonConfig"],
    "models.phi": ["PHI_PRETRAINED_CONFIG_ARCHIVE_MAP", "PhiConfig"],
    "models.phobert": ["PhobertTokenizer"],
    "models.pix2struct": [
        "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "Pix2StructConfig",
        "Pix2StructProcessor",
        "Pix2StructTextConfig",
        "Pix2StructVisionConfig",
    ],
    "models.plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"],
    "models.poolformer": [
        "POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "PoolFormerConfig",
    ],
    "models.pop2piano": [
        "POP2PIANO_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "Pop2PianoConfig",
    ],
    "models.prophetnet": [
        "PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "ProphetNetConfig",
        "ProphetNetTokenizer",
    ],
    "models.pvt": ["PVT_PRETRAINED_CONFIG_ARCHIVE_MAP", "PvtConfig"],
    "models.pvt_v2": ["PVT_V2_PRETRAINED_CONFIG_ARCHIVE_MAP", "PvtV2Config"],
    "models.qdqbert": ["QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "QDQBertConfig"],
    "models.qwen2": [
        "QWEN2_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "Qwen2Config",
        "Qwen2Tokenizer",
    ],
    "models.rag": ["RagConfig", "RagRetriever", "RagTokenizer"],
    "models.realm": [
        "REALM_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "RealmConfig",
        "RealmTokenizer",
    ],
    "models.reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"],
    "models.regnet": ["REGNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "RegNetConfig"],
    "models.rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig"],
    "models.resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig"],
    "models.roberta": [
        "ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "RobertaConfig",
        "RobertaTokenizer",
    ],
    "models.roberta_prelayernorm": [
        "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "RobertaPreLayerNormConfig",
    ],
    "models.roc_bert": [
        "ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "RoCBertConfig",
        "RoCBertTokenizer",
    ],
    "models.roformer": [
        "ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "RoFormerConfig",
        "RoFormerTokenizer",
    ],
    "models.rwkv": ["RWKV_PRETRAINED_CONFIG_ARCHIVE_MAP", "RwkvConfig"],
    "models.sam": [
        "SAM_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "SamConfig",
        "SamMaskDecoderConfig",
        "SamProcessor",
        "SamPromptEncoderConfig",
        "SamVisionConfig",
    ],



    # 以下是一系列模型和相关的配置映射、配置类或者分词器的定义,每个条目对应于一个模型或者组件
    "models.pegasus": [
        "PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "PegasusConfig",
        "PegasusTokenizer",
    ],
    # Pegasus 模型及其相关配置和分词器
    "models.pegasus_x": ["PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusXConfig"],
    # PegasusX 模型及其相关配置
    "models.perceiver": [
        "PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "PerceiverConfig",
        "PerceiverTokenizer",
    ],
    # Perceiver 模型及其相关配置和分词器
    "models.persimmon": ["PERSIMMON_PRETRAINED_CONFIG_ARCHIVE_MAP", "PersimmonConfig"],
    # Persimmon 模型及其相关配置
    "models.phi": ["PHI_PRETRAINED_CONFIG_ARCHIVE_MAP", "PhiConfig"],
    # Phi 模型及其相关配置
    "models.phobert": ["PhobertTokenizer"],
    # Phobert 分词器
    "models.pix2struct": [
        "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "Pix2StructConfig",
        "Pix2StructProcessor",
        "Pix2StructTextConfig",
        "Pix2StructVisionConfig",
    ],
    # Pix2Struct 模型及其相关配置和处理器
    "models.plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"],
    # PLBart 模型及其相关配置
    "models.poolformer": [
        "POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "PoolFormerConfig",
    ],
    # PoolFormer 模型及其相关配置
    "models.pop2piano": [
        "POP2PIANO_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "Pop2PianoConfig",
    ],
    # Pop2Piano 模型及其相关配置
    "models.prophetnet": [
        "PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "ProphetNetConfig",
        "ProphetNetTokenizer",
    ],
    # ProphetNet 模型及其相关配置和分词器
    "models.pvt": ["PVT_PRETRAINED_CONFIG_ARCHIVE_MAP", "PvtConfig"],
    # Pvt 模型及其相关配置
    "models.pvt_v2": ["PVT_V2_PRETRAINED_CONFIG_ARCHIVE_MAP", "PvtV2Config"],
    # PvtV2 模型及其相关配置
    "models.qdqbert": ["QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "QDQBertConfig"],
    # QDQBert 模型及其相关配置
    "models.qwen2": [
        "QWEN2_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "Qwen2Config",
        "Qwen2Tokenizer",
    ],
    # Qwen2 模型及其相关配置和分词器
    "models.rag": ["RagConfig", "RagRetriever", "RagTokenizer"],
    # Rag 模型及其相关配置和检索器
    "models.realm": [
        "REALM_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "RealmConfig",
        "RealmTokenizer",
    ],
    # Realm 模型及其相关配置和分词器
    "models.reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"],
    # Reformer 模型及其相关配置
    "models.regnet": ["REGNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "RegNetConfig"],
    # RegNet 模型及其相关配置
    "models.rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig"],
    # RemBert 模型及其相关配置
    "models.resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig"],
    # ResNet 模型及其相关配置
    "models.roberta": [
        "ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "RobertaConfig",
        "RobertaTokenizer",
    ],
    # Roberta 模型及其相关配置和分词器
    "models.roberta_prelayernorm": [
        "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "RobertaPreLayerNormConfig",
    ],
    # Roberta with PreLayerNorm 模型及其相关配置
    "models.roc_bert": [
        "ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "RoCBertConfig",
        "RoCBertTokenizer",
    ],
    # RoCBert 模型及其相关配置和分词器
    "models.roformer": [
        "ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "RoFormerConfig",
        "RoFormerTokenizer",
    ],
    # RoFormer 模型及其相关配置和分词器
    "models.rwkv": ["RWKV_PRETRAINED_CONFIG_ARCHIVE_MAP", "RwkvConfig"],
    # Rwkv 模型及其相关配置
    "models.sam": [
        "SAM_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "SamConfig",
        "SamMaskDecoderConfig",
        "SamProcessor",
        "SamPromptEncoderConfig",
        "SamVisionConfig",
    ],
    # Sam 模型及其相关配置和处理器、编码器、视觉配置
    # 定义了多个模型及其相关配置和工具的映射关系,每个键对应一个模型的相关信息列表

    "models.seamless_m4t": [
        "SEAMLESS_M4T_PRETRAINED_CONFIG_ARCHIVE_MAP",  # SEAMLESS_M4T 的预训练配置文件映射
        "SeamlessM4TConfig",  # SEAMLESS_M4T 的配置类
        "SeamlessM4TFeatureExtractor",  # SEAMLESS_M4T 的特征提取器类
        "SeamlessM4TProcessor",  # SEAMLESS_M4T 的处理器类
    ],
    "models.seamless_m4t_v2": [
        "SEAMLESS_M4T_V2_PRETRAINED_CONFIG_ARCHIVE_MAP",  # SEAMLESS_M4T_V2 的预训练配置文件映射
        "SeamlessM4Tv2Config",  # SEAMLESS_M4T_V2 的配置类
    ],
    "models.segformer": [
        "SEGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",  # SEGFORMER 的预训练配置文件映射
        "SegformerConfig",  # SEGFORMER 的配置类
    ],
    "models.seggpt": [
        "SEGGPT_PRETRAINED_CONFIG_ARCHIVE_MAP",  # SEGGPT 的预训练配置文件映射
        "SegGptConfig",  # SEGGPT 的配置类
    ],
    "models.sew": [
        "SEW_PRETRAINED_CONFIG_ARCHIVE_MAP",  # SEW 的预训练配置文件映射
        "SEWConfig",  # SEW 的配置类
    ],
    "models.sew_d": [
        "SEW_D_PRETRAINED_CONFIG_ARCHIVE_MAP",  # SEW_D 的预训练配置文件映射
        "SEWDConfig",  # SEW_D 的配置类
    ],
    "models.siglip": [
        "SIGLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",  # SIGLIP 的预训练配置文件映射
        "SiglipConfig",  # SIGLIP 的配置类
        "SiglipProcessor",  # SIGLIP 的处理器类
        "SiglipTextConfig",  # SIGLIP 文本处理的配置类
        "SiglipVisionConfig",  # SIGLIP 视觉处理的配置类
    ],
    "models.speech_encoder_decoder": [
        "SpeechEncoderDecoderConfig",  # 语音编解码器的配置类
    ],
    "models.speech_to_text": [
        "SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 语音到文本的预训练配置文件映射
        "Speech2TextConfig",  # 语音到文本的配置类
        "Speech2TextFeatureExtractor",  # 语音到文本的特征提取器类
        "Speech2TextProcessor",  # 语音到文本的处理器类
    ],
    "models.speech_to_text_2": [
        "SPEECH_TO_TEXT_2_PRETRAINED_CONFIG_ARCHIVE_MAP",  # 语音到文本2的预训练配置文件映射
        "Speech2Text2Config",  # 语音到文本2的配置类
        "Speech2Text2Processor",  # 语音到文本2的处理器类
        "Speech2Text2Tokenizer",  # 语音到文本2的分词器类
    ],
    "models.speecht5": [
        "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP",  # SPEECHT5 的预训练配置文件映射
        "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP",  # SPEECHT5 HiFiGAN 的预训练配置文件映射
        "SpeechT5Config",  # SPEECHT5 的配置类
        "SpeechT5FeatureExtractor",  # SPEECHT5 的特征提取器类
        "SpeechT5HifiGanConfig",  # SPEECHT5 HiFiGAN 的配置类
        "SpeechT5Processor",  # SPEECHT5 的处理器类
    ],
    "models.splinter": [
        "SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAP",  # SPLINTER 的预训练配置文件映射
        "SplinterConfig",  # SPLINTER 的配置类
        "SplinterTokenizer",  # SPLINTER 的分词器类
    ],
    "models.squeezebert": [
        "SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",  # SQUEEZEBERT 的预训练配置文件映射
        "SqueezeBertConfig",  # SQUEEZEBERT 的配置类
        "SqueezeBertTokenizer",  # SQUEEZEBERT 的分词器类
    ],
    "models.stablelm": [
        "STABLELM_PRETRAINED_CONFIG_ARCHIVE_MAP",  # STABLELM 的预训练配置文件映射
        "StableLmConfig",  # STABLELM 的配置类
    ],
    "models.starcoder2": [
        "STARCODER2_PRETRAINED_CONFIG_ARCHIVE_MAP",  # STARCODER2 的预训练配置文件映射
        "Starcoder2Config",  # STARCODER2 的配置类
    ],
    "models.superpoint": [
        "SUPERPOINT_PRETRAINED_CONFIG_ARCHIVE_MAP",  # SUPERPOINT 的预训练配置文件映射
        "SuperPointConfig",  # SUPERPOINT 的配置类
    ],
    "models.swiftformer": [
        "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",  # SWIFTFORMER 的预训练配置文件映射
        "SwiftFormerConfig",  # SWIFTFORMER 的配置类
    ],
    "models.swin": [
        "SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP",  # SWIN 的预训练配置文件映射
        "SwinConfig",  # SWIN 的配置类
    ],
    "models.swin2sr": [
        "SWIN2SR_PRETRAINED_CONFIG_ARCHIVE_MAP",  # SWIN2SR 的预训练配置文件映射
        "Swin2SRConfig",  # SWIN2SR 的配置类
    ],
    "models.swinv2": [
        "SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP",  # SWINV2 的预训练配置文件映射
        "Swinv2Config",  # SWINV2 的配置类
    ],
    "models.switch_transformers": [
        "SWITCH_TRANSFORMERS_PRETRAINED_CONFIG_ARCHIVE_MAP",  # SWITCH_TRANSFORMERS 的预训练配置文件映射
        "SwitchTransformersConfig",  # SWITCH_TRANSFORMERS 的配置类
    ],
    "models.t5": [
        "T5_PRETRAINED_CONFIG_ARCHIVE_MAP",  # T5 的预训练配置文件映射
        "T5Config",  # T5 的配置类
    ],
    "models.table_transformer": [
        "TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",  # TABLE_TRANSFORMER 的预训练配置文件映射
        "TableTransformerConfig",  # TABLE_TRANSFORMER 的配置类
    ],
    "models.tapas": [
        "TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP",  # TAPAS 的预训练配置文件映射
        "TapasConfig",  # TAPAS 的配置类
        "TapasTokenizer",  # TAPAS 的分词器类
    ],
    # 导入模型 "models.time_series_transformer" 的相关配置和类名
    "models.time_series_transformer": [
        "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "TimeSeriesTransformerConfig",
    ],
    # 导入模型 "models.timesformer" 的相关配置和类名
    "models.timesformer": [
        "TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "TimesformerConfig",
    ],
    # 导入模型 "models.timm_backbone" 的相关配置类名
    "models.timm_backbone": ["TimmBackboneConfig"],
    # 导入模型 "models.trocr" 的相关配置、类名和处理器名
    "models.trocr": [
        "TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "TrOCRConfig",
        "TrOCRProcessor",
    ],
    # 导入模型 "models.tvlt" 的相关配置、类名和特征提取器、处理器名
    "models.tvlt": [
        "TVLT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "TvltConfig",
        "TvltFeatureExtractor",
        "TvltProcessor",
    ],
    # 导入模型 "models.tvp" 的相关配置、类名和处理器名
    "models.tvp": [
        "TVP_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "TvpConfig",
        "TvpProcessor",
    ],
    # 导入模型 "models.udop" 的相关配置、类名和处理器名
    "models.udop": [
        "UDOP_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "UdopConfig",
        "UdopProcessor",
    ],
    # 导入模型 "models.umt5" 的相关配置类名
    "models.umt5": ["UMT5Config"],
    # 导入模型 "models.unispeech" 的相关配置和类名
    "models.unispeech": [
        "UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "UniSpeechConfig",
    ],
    # 导入模型 "models.unispeech_sat" 的相关配置和类名
    "models.unispeech_sat": [
        "UNISPEECH_SAT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "UniSpeechSatConfig",
    ],
    # 导入模型 "models.univnet" 的相关配置、类名和特征提取器名
    "models.univnet": [
        "UNIVNET_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "UnivNetConfig",
        "UnivNetFeatureExtractor",
    ],
    # 导入模型 "models.upernet" 的相关配置类名
    "models.upernet": ["UperNetConfig"],
    # 导入模型 "models.videomae" 的相关配置类名
    "models.videomae": ["VIDEOMAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "VideoMAEConfig"],
    # 导入模型 "models.vilt" 的相关配置、类名和特征提取器、图像处理器、处理器名
    "models.vilt": [
        "VILT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "ViltConfig",
        "ViltFeatureExtractor",
        "ViltImageProcessor",
        "ViltProcessor",
    ],
    # 导入模型 "models.vipllava" 的相关配置和类名
    "models.vipllava": [
        "VIPLLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "VipLlavaConfig",
    ],
    # 导入模型 "models.vision_encoder_decoder" 的相关配置类名
    "models.vision_encoder_decoder": ["VisionEncoderDecoderConfig"],
    # 导入模型 "models.vision_text_dual_encoder" 的相关配置和类名
    "models.vision_text_dual_encoder": [
        "VisionTextDualEncoderConfig",
        "VisionTextDualEncoderProcessor",
    ],
    # 导入模型 "models.visual_bert" 的相关配置和类名
    "models.visual_bert": [
        "VISUAL_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "VisualBertConfig",
    ],
    # 导入模型 "models.vit" 的相关配置类名
    "models.vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig"],
    # 导入模型 "models.vit_hybrid" 的相关配置类名
    "models.vit_hybrid": [
        "VIT_HYBRID_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "ViTHybridConfig",
    ],
    # 导入模型 "models.vit_mae" 的相关配置类名
    "models.vit_mae": ["VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMAEConfig"],
    # 导入模型 "models.vit_msn" 的相关配置类名
    "models.vit_msn": ["VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMSNConfig"],
    # 导入模型 "models.vitdet" 的相关配置类名
    "models.vitdet": ["VITDET_PRETRAINED_CONFIG_ARCHIVE_MAP", "VitDetConfig"],
    # 导入模型 "models.vitmatte" 的相关配置类名
    "models.vitmatte": ["VITMATTE_PRETRAINED_CONFIG_ARCHIVE_MAP", "VitMatteConfig"],
    # 导入模型 "models.vits" 的相关配置、类名和分词器、处理器名
    "models.vits": [
        "VITS_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "VitsConfig",
        "VitsTokenizer",
    ],
    # 导入模型 "models.vivit" 的相关配置和类名
    "models.vivit": [
        "VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "VivitConfig",
    ],
    # 导入模型 "models.wav2vec2" 的相关配置、类名和CTC标记器、特征提取器、处理器、分词器名
    "models.wav2vec2": [
        "WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "Wav2Vec2Config",
        "Wav2Vec2CTCTokenizer",
        "Wav2Vec2FeatureExtractor",
        "Wav2Vec2Processor",
        "Wav2Vec2Tokenizer",
    ],
    "models.wav2vec2_bert": [
        "WAV2VEC2_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP",  # WAV2VEC2_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP 是 models.wav2vec2_bert 的预训练配置映射
        "Wav2Vec2BertConfig",  # Wav2Vec2BertConfig 是用于 models.wav2vec2_bert 的配置类
        "Wav2Vec2BertProcessor",  # Wav2Vec2BertProcessor 是处理 models.wav2vec2_bert 的处理器类
    ],
    "models.wav2vec2_conformer": [
        "WAV2VEC2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",  # WAV2VEC2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP 是 models.wav2vec2_conformer 的预训练配置映射
        "Wav2Vec2ConformerConfig",  # Wav2Vec2ConformerConfig 是用于 models.wav2vec2_conformer 的配置类
    ],
    "models.wav2vec2_phoneme": ["Wav2Vec2PhonemeCTCTokenizer"],  # Wav2Vec2PhonemeCTCTokenizer 是 models.wav2vec2_phoneme 的音素 CTC 分词器类
    "models.wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"],  # Wav2Vec2ProcessorWithLM 是带有语言模型的 models.wav2vec2_with_lm 的处理器类
    "models.wavlm": [
        "WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP",  # WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP 是 models.wavlm 的预训练配置映射
        "WavLMConfig",  # WavLMConfig 是用于 models.wavlm 的配置类
    ],
    "models.whisper": [
        "WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP",  # WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP 是 models.whisper 的预训练配置映射
        "WhisperConfig",  # WhisperConfig 是用于 models.whisper 的配置类
        "WhisperFeatureExtractor",  # WhisperFeatureExtractor 是用于 models.whisper 的特征提取器类
        "WhisperProcessor",  # WhisperProcessor 是处理 models.whisper 的处理器类
        "WhisperTokenizer",  # WhisperTokenizer 是 models.whisper 的分词器类
    ],
    "models.x_clip": [
        "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",  # XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP 是 models.x_clip 的预训练配置映射
        "XCLIPConfig",  # XCLIPConfig 是用于 models.x_clip 的配置类
        "XCLIPProcessor",  # XCLIPProcessor 是处理 models.x_clip 的处理器类
        "XCLIPTextConfig",  # XCLIPTextConfig 是 models.x_clip 的文本配置类
        "XCLIPVisionConfig",  # XCLIPVisionConfig 是 models.x_clip 的视觉配置类
    ],
    "models.xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"],  # XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP 是 models.xglm 的预训练配置映射,XGLMConfig 是用于 models.xglm 的配置类
    "models.xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMTokenizer"],  # XLM_PRETRAINED_CONFIG_ARCHIVE_MAP 是 models.xlm 的预训练配置映射,XLMConfig 是用于 models.xlm 的配置类,XLMTokenizer 是 models.xlm 的分词器类
    "models.xlm_prophetnet": [
        "XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP",  # XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP 是 models.xlm_prophetnet 的预训练配置映射
        "XLMProphetNetConfig",  # XLMProphetNetConfig 是用于 models.xlm_prophetnet 的配置类
    ],
    "models.xlm_roberta": [
        "XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP",  # XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP 是 models.xlm_roberta 的预训练配置映射
        "XLMRobertaConfig",  # XLMRobertaConfig 是用于 models.xlm_roberta 的配置类
    ],
    "models.xlm_roberta_xl": [
        "XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP",  # XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP 是 models.xlm_roberta_xl 的预训练配置映射
        "XLMRobertaXLConfig",  # XLMRobertaXLConfig 是用于 models.xlm_roberta_xl 的配置类
    ],
    "models.xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"],  # XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP 是 models.xlnet 的预训练配置映射,XLNetConfig 是用于 models.xlnet 的配置类
    "models.xmod": ["XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP", "XmodConfig"],  # XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP 是 models.xmod 的预训练配置映射,XmodConfig 是用于 models.xmod 的配置类
    "models.yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig"],  # YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP 是 models.yolos 的预训练配置映射,YolosConfig 是用于 models.yolos 的配置类
    "models.yoso": ["YOSO_PRETRAINED_CONFIG_ARCHIVE_MAP", "YosoConfig"],  # YOSO_PRETRAINED_CONFIG_ARCHIVE_MAP 是 models.yoso 的预训练配置映射,YosoConfig 是用于 models.yoso 的配置类
    "onnx": [],  # 空列表,表示没有与 onnx 相关的配置
    "pipelines": [
        "AudioClassificationPipeline",  # 音频分类管道
        "AutomaticSpeechRecognitionPipeline",  # 自动语音识别管道
        "Conversation",  # 对话管道
        "ConversationalPipeline",  # 会话式管道
        "CsvPipelineDataFormat",  # CSV 数据格式管道
        "DepthEstimationPipeline",  # 深度估计管道
        "DocumentQuestionAnsweringPipeline",  # 文档问答管道
        "FeatureExtractionPipeline",  # 特征提取管道
        "FillMaskPipeline",  # 填充掩码管道
        "ImageClassificationPipeline",  # 图像分类管道
        "ImageFeatureExtractionPipeline",  # 图像特征提取管道
        "ImageSegmentationPipeline",  # 图像分割管道
        "ImageToImagePipeline",  # 图像到图像管道
        "ImageToTextPipeline",  # 图像到文本管道
        "JsonPipelineDataFormat",  # JSON 数据格式管道
        "MaskGenerationPipeline",  # 掩码生成管道
        "NerPipeline",  # 命名实体识别管道
        "ObjectDetectionPipeline",  # 目标检测管道
        "PipedPipelineDataFormat",  # 管道数据格式管道
        "Pipeline",  # 管道
        "PipelineDataFormat",  # 管道数据格式
        "QuestionAnsweringPipeline",  # 问答管道
        "SummarizationPipeline",  # 摘要生成管道
        "TableQuestionAnsweringPipeline",  # 表格问答管道
        "Text2TextGenerationPipeline",  # 文本到文本生成管道
        "TextClassificationPipeline",  # 文本分类管道
        "TextGenerationPipeline",  # 文本生成管道
        "TextToAudioPipeline",  # 文本到音频管道
        "TokenClassificationPipeline",  # 标记分类管道
        "TranslationPipeline",  # 翻译管道
        "VideoClassificationPipeline",  # 视频分类管道
        "VisualQuestionAnsweringPipeline",  # 视觉问答管道
        "ZeroShotAudioClassificationPipeline",  # 零样本音频分类管道
        "ZeroShotClassificationPipeline",  # 零样本分类管道
        "ZeroShotImageClassificationPipeline",  # 零样本图像分类管道
        "ZeroShotObjectDetectionPipeline",  # 零样本目标检测管道
        "pipeline",  # 管道(通用概念)
    ],
    "processing_utils": ["ProcessorMixin"],  # 处理工具:混合处理器
    "quantizers": [],  # 量化器(空列表,暂无量化器)
    "testing_utils": [],  # 测试工具(空列表,暂无测试工具)
    "tokenization_utils": ["PreTrainedTokenizer"],  # 标记化工具:预训练标记器
    "tokenization_utils_base": [
        "AddedToken",  # 增加的标记
        "BatchEncoding",  # 批次编码
        "CharSpan",  # 字符跨度
        "PreTrainedTokenizerBase",  # 预训练标记器基类
        "SpecialTokensMixin",  # 特殊标记混合类
        "TokenSpan",  # 标记跨度
    ],
    "tools": [
        "Agent",  # 代理
        "AzureOpenAiAgent",  # Azure OpenAI 代理
        "HfAgent",  # Hugging Face 代理
        "LocalAgent",  # 本地代理
        "OpenAiAgent",  # OpenAI 代理
        "PipelineTool",  # 管道工具
        "RemoteTool",  # 远程工具
        "Tool",  # 工具
        "launch_gradio_demo",  # 启动 Gradio 演示
        "load_tool",  # 加载工具
    ],
    "trainer_callback": [
        "DefaultFlowCallback",  # 默认流程回调
        "EarlyStoppingCallback",  # 提前停止回调
        "PrinterCallback",  # 打印回调
        "ProgressCallback",  # 进度回调
        "TrainerCallback",  # 训练器回调
        "TrainerControl",  # 训练控制
        "TrainerState",  # 训练状态
    ],
    "trainer_utils": [
        "EvalPrediction",  # 评估预测
        "IntervalStrategy",  # 间隔策略
        "SchedulerType",  # 调度器类型
        "enable_full_determinism",  # 启用完全确定性
        "set_seed",  # 设置种子
    ],
    "training_args": ["TrainingArguments"],  # 训练参数:训练参数
    "training_args_seq2seq": ["Seq2SeqTrainingArguments"],  # 序列到序列训练参数:序列到序列训练参数
    "training_args_tf": ["TFTrainingArguments"],  # TensorFlow 训练参数:TensorFlow 训练参数
    "utils": [
        "CONFIG_NAME",  # 配置名称常量
        "MODEL_CARD_NAME",  # 模型卡片名称常量
        "PYTORCH_PRETRAINED_BERT_CACHE",  # PyTorch预训练BERT模型缓存常量
        "PYTORCH_TRANSFORMERS_CACHE",  # PyTorch Transformers模型缓存常量
        "SPIECE_UNDERLINE",  # 分词符号下划线常量
        "TF2_WEIGHTS_NAME",  # TensorFlow 2.x模型权重名称常量
        "TF_WEIGHTS_NAME",  # TensorFlow模型权重名称常量
        "TRANSFORMERS_CACHE",  # Transformers模型缓存常量
        "WEIGHTS_NAME",  # 模型权重名称常量
        "TensorType",  # 张量类型
        "add_end_docstrings",  # 添加结尾文档字符串函数
        "add_start_docstrings",  # 添加开头文档字符串函数
        "is_apex_available",  # 是否可用Apex库
        "is_bitsandbytes_available",  # 是否可用BitsAndBytes库
        "is_datasets_available",  # 是否可用datasets库
        "is_decord_available",  # 是否可用Decord库
        "is_faiss_available",  # 是否可用Faiss库
        "is_flax_available",  # 是否可用Flax库
        "is_keras_nlp_available",  # 是否可用Keras NLP库
        "is_phonemizer_available",  # 是否可用Phonemizer库
        "is_psutil_available",  # 是否可用psutil库
        "is_py3nvml_available",  # 是否可用py3nvml库
        "is_pyctcdecode_available",  # 是否可用PyCTCDecode库
        "is_sacremoses_available",  # 是否可用sacremoses库
        "is_safetensors_available",  # 是否可用SafeTensors库
        "is_scipy_available",  # 是否可用SciPy库
        "is_sentencepiece_available",  # 是否可用SentencePiece库
        "is_sklearn_available",  # 是否可用scikit-learn库
        "is_speech_available",  # 是否可用speech库
        "is_tensorflow_text_available",  # 是否可用TensorFlow Text库
        "is_tf_available",  # 是否可用TensorFlow库
        "is_timm_available",  # 是否可用Timm库
        "is_tokenizers_available",  # 是否可用tokenizers库
        "is_torch_available",  # 是否可用PyTorch库
        "is_torch_neuroncore_available",  # 是否可用Torch NeuronCore库
        "is_torch_npu_available",  # 是否可用Torch NPU库
        "is_torch_tpu_available",  # 是否可用Torch TPU库
        "is_torchvision_available",  # 是否可用TorchVision库
        "is_torch_xla_available",  # 是否可用Torch XLA库
        "is_torch_xpu_available",  # 是否可用Torch XPU库
        "is_vision_available",  # 是否可用Vision库
        "logging",  # 日志记录模块
    ],
    "utils.quantization_config": [
        "AqlmConfig",  # Aqlm配置类
        "AwqConfig",  # Awq配置类
        "BitsAndBytesConfig",  # BitsAndBytes配置类
        "GPTQConfig",  # GPTQ配置类
        "QuantoConfig",  # Quanto配置类
    ],
# sentencepiece-backed objects

# 尝试检查是否存在 sentencepiece 库的可用性
try:
    # 如果 sentencepiece 库不可用,引发 OptionalDependencyNotAvailable 异常
    if not is_sentencepiece_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    # 如果引发了 OptionalDependencyNotAvailable 异常,则从 utils 中导入 dummy_sentencepiece_objects
    from .utils import dummy_sentencepiece_objects

    # 将 dummy_sentencepiece_objects 中所有非私有成员的名称添加到 _import_structure["utils.dummy_sentencepiece_objects"] 列表中
    _import_structure["utils.dummy_sentencepiece_objects"] = [
        name for name in dir(dummy_sentencepiece_objects) if not name.startswith("_")
    ]
else:
    # 如果 sentencepiece 库可用,分别添加以下模块的 Tokenizer 到对应的 _import_structure 中的列表中
    _import_structure["models.albert"].append("AlbertTokenizer")
    _import_structure["models.barthez"].append("BarthezTokenizer")
    _import_structure["models.bartpho"].append("BartphoTokenizer")
    _import_structure["models.bert_generation"].append("BertGenerationTokenizer")
    _import_structure["models.big_bird"].append("BigBirdTokenizer")
    _import_structure["models.camembert"].append("CamembertTokenizer")
    _import_structure["models.code_llama"].append("CodeLlamaTokenizer")
    _import_structure["models.cpm"].append("CpmTokenizer")
    _import_structure["models.deberta_v2"].append("DebertaV2Tokenizer")
    _import_structure["models.ernie_m"].append("ErnieMTokenizer")
    _import_structure["models.fnet"].append("FNetTokenizer")
    _import_structure["models.gemma"].append("GemmaTokenizer")
    _import_structure["models.gpt_sw3"].append("GPTSw3Tokenizer")
    _import_structure["models.layoutxlm"].append("LayoutXLMTokenizer")
    _import_structure["models.llama"].append("LlamaTokenizer")
    _import_structure["models.m2m_100"].append("M2M100Tokenizer")
    _import_structure["models.marian"].append("MarianTokenizer")
    _import_structure["models.mbart"].append("MBartTokenizer")
    _import_structure["models.mbart50"].append("MBart50Tokenizer")
    _import_structure["models.mluke"].append("MLukeTokenizer")
    _import_structure["models.mt5"].append("MT5Tokenizer")
    _import_structure["models.nllb"].append("NllbTokenizer")
    _import_structure["models.pegasus"].append("PegasusTokenizer")
    _import_structure["models.plbart"].append("PLBartTokenizer")
    _import_structure["models.reformer"].append("ReformerTokenizer")
    _import_structure["models.rembert"].append("RemBertTokenizer")
    _import_structure["models.seamless_m4t"].append("SeamlessM4TTokenizer")
    _import_structure["models.siglip"].append("SiglipTokenizer")
    _import_structure["models.speech_to_text"].append("Speech2TextTokenizer")
    _import_structure["models.speecht5"].append("SpeechT5Tokenizer")
    _import_structure["models.t5"].append("T5Tokenizer")
    _import_structure["models.udop"].append("UdopTokenizer")
    _import_structure["models.xglm"].append("XGLMTokenizer")
    _import_structure["models.xlm_prophetnet"].append("XLMProphetNetTokenizer")
    _import_structure["models.xlm_roberta"].append("XLMRobertaTokenizer")
    _import_structure["models.xlnet"].append("XLNetTokenizer")
    # 将 "utils.dummy_tokenizers_objects" 添加到 _import_structure 字典中,其对应的值是一个列表
    _import_structure["utils.dummy_tokenizers_objects"] = [
        # 遍历 dummy_tokenizers_objects 模块中的所有名称,但排除以 "_" 开头的名称
        name for name in dir(dummy_tokenizers_objects) if not name.startswith("_")
    ]
else:
    # 如果不是慢速分词器,则使用快速分词器结构

    # 将 AlbertTokenizerFast 添加到 _import_structure["models.albert"] 中
    _import_structure["models.albert"].append("AlbertTokenizerFast")
    # 将 BartTokenizerFast 添加到 _import_structure["models.bart"] 中
    _import_structure["models.bart"].append("BartTokenizerFast")
    # 将 BarthezTokenizerFast 添加到 _import_structure["models.barthez"] 中
    _import_structure["models.barthez"].append("BarthezTokenizerFast")
    # 将 BertTokenizerFast 添加到 _import_structure["models.bert"] 中
    _import_structure["models.bert"].append("BertTokenizerFast")
    # 将 BigBirdTokenizerFast 添加到 _import_structure["models.big_bird"] 中
    _import_structure["models.big_bird"].append("BigBirdTokenizerFast")
    # 将 BlenderbotTokenizerFast 添加到 _import_structure["models.blenderbot"] 中
    _import_structure["models.blenderbot"].append("BlenderbotTokenizerFast")
    # 将 BlenderbotSmallTokenizerFast 添加到 _import_structure["models.blenderbot_small"] 中
    _import_structure["models.blenderbot_small"].append("BlenderbotSmallTokenizerFast")
    # 将 BloomTokenizerFast 添加到 _import_structure["models.bloom"] 中
    _import_structure["models.bloom"].append("BloomTokenizerFast")
    # 将 CamembertTokenizerFast 添加到 _import_structure["models.camembert"] 中
    _import_structure["models.camembert"].append("CamembertTokenizerFast")
    # 将 CLIPTokenizerFast 添加到 _import_structure["models.clip"] 中
    _import_structure["models.clip"].append("CLIPTokenizerFast")
    # 将 CodeLlamaTokenizerFast 添加到 _import_structure["models.code_llama"] 中
    _import_structure["models.code_llama"].append("CodeLlamaTokenizerFast")
    # 将 CodeGenTokenizerFast 添加到 _import_structure["models.codegen"] 中
    _import_structure["models.codegen"].append("CodeGenTokenizerFast")
    # 将 CohereTokenizerFast 添加到 _import_structure["models.cohere"] 中
    _import_structure["models.cohere"].append("CohereTokenizerFast")
    # 将 ConvBertTokenizerFast 添加到 _import_structure["models.convbert"] 中
    _import_structure["models.convbert"].append("ConvBertTokenizerFast")
    # 将 CpmTokenizerFast 添加到 _import_structure["models.cpm"] 中
    _import_structure["models.cpm"].append("CpmTokenizerFast")
    # 将 DebertaTokenizerFast 添加到 _import_structure["models.deberta"] 中
    _import_structure["models.deberta"].append("DebertaTokenizerFast")
    # 将 DebertaV2TokenizerFast 添加到 _import_structure["models.deberta_v2"] 中
    _import_structure["models.deberta_v2"].append("DebertaV2TokenizerFast")
    # 将 RetriBertTokenizerFast 添加到 _import_structure["models.deprecated.retribert"] 中
    _import_structure["models.deprecated.retribert"].append("RetriBertTokenizerFast")
    # 将 DistilBertTokenizerFast 添加到 _import_structure["models.distilbert"] 中
    _import_structure["models.distilbert"].append("DistilBertTokenizerFast")
    # 将 DPRContextEncoderTokenizerFast、DPRQuestionEncoderTokenizerFast、DPRReaderTokenizerFast 添加到 _import_structure["models.dpr"] 中
    _import_structure["models.dpr"].extend(
        [
            "DPRContextEncoderTokenizerFast",
            "DPRQuestionEncoderTokenizerFast",
            "DPRReaderTokenizerFast",
        ]
    )
    # 将 ElectraTokenizerFast 添加到 _import_structure["models.electra"] 中
    _import_structure["models.electra"].append("ElectraTokenizerFast")
    # 将 FNetTokenizerFast 添加到 _import_structure["models.fnet"] 中
    _import_structure["models.fnet"].append("FNetTokenizerFast")
    # 将 FunnelTokenizerFast 添加到 _import_structure["models.funnel"] 中
    _import_structure["models.funnel"].append("FunnelTokenizerFast")
    # 将 GemmaTokenizerFast 添加到 _import_structure["models.gemma"] 中
    _import_structure["models.gemma"].append("GemmaTokenizerFast")
    # 将 GPT2TokenizerFast 添加到 _import_structure["models.gpt2"] 中
    _import_structure["models.gpt2"].append("GPT2TokenizerFast")
    # 将 GPTNeoXTokenizerFast 添加到 _import_structure["models.gpt_neox"] 中
    _import_structure["models.gpt_neox"].append("GPTNeoXTokenizerFast")
    # 将 GPTNeoXJapaneseTokenizer 添加到 _import_structure["models.gpt_neox_japanese"] 中
    _import_structure["models.gpt_neox_japanese"].append("GPTNeoXJapaneseTokenizer")
    # 将 HerbertTokenizerFast 添加到 _import_structure["models.herbert"] 中
    _import_structure["models.herbert"].append("HerbertTokenizerFast")
    # 将 LayoutLMTokenizerFast 添加到 _import_structure["models.layoutlm"] 中
    _import_structure["models.layoutlm"].append("LayoutLMTokenizerFast")
    # 将 LayoutLMv2TokenizerFast 添加到 _import_structure["models.layoutlmv2"] 中
    _import_structure["models.layoutlmv2"].append("LayoutLMv2TokenizerFast")
    # 将 LayoutLMv3TokenizerFast 添加到 _import_structure["models.layoutlmv3"] 中
    _import_structure["models.layoutlmv3"].append("LayoutLMv3TokenizerFast")
    # 将 LayoutXLMTokenizerFast 添加到 _import_structure["models.layoutxlm"] 中
    _import_structure["models.layoutxlm"].append("LayoutXLMTokenizerFast")
    # 将 LEDTokenizerFast 添加到 _import_structure["models.led"] 中
    _import_structure["models.led"].append("LEDTokenizerFast")
    # 将 LlamaTokenizerFast 添加到 _import_structure["models.llama"] 中
    _import_structure["models.llama"].append("LlamaTokenizerFast")
    # 将 LongformerTokenizerFast 添加到 _import_structure["models.longformer"] 中
    _import_structure["models.longformer"].append("LongformerTokenizerFast")
    # 将 LxmertTokenizerFast 添加到 _import_structure["models.lxmert"] 中
    _import_structure["models.lxmert"].append("LxmertTokenizerFast")
    # 将 MarkupLMTokenizerFast 添加到 _import_structure["models.markuplm"] 中
    _import_structure["models.markuplm"].append("MarkupLMTokenizerFast")
    # 将 MBartTokenizerFast 添加到 _import_structure["models.mbart"] 中
    _import_structure["models.mbart"].append("MBartTokenizerFast")
    # 将 MBart50TokenizerFast 添加到 _import_structure["models.mbart50"] 中
    _import_structure["models.mbart50"].append("MBart50TokenizerFast")
    # 将 "MobileBertTokenizerFast" 添加到 _import_structure["models.mobilebert"] 列表中
    _import_structure["models.mobilebert"].append("MobileBertTokenizerFast")
    # 将 "MPNetTokenizerFast" 添加到 _import_structure["models.mpnet"] 列表中
    _import_structure["models.mpnet"].append("MPNetTokenizerFast")
    # 将 "MT5TokenizerFast" 添加到 _import_structure["models.mt5"] 列表中
    _import_structure["models.mt5"].append("MT5TokenizerFast")
    # 将 "MvpTokenizerFast" 添加到 _import_structure["models.mvp"] 列表中
    _import_structure["models.mvp"].append("MvpTokenizerFast")
    # 将 "NllbTokenizerFast" 添加到 _import_structure["models.nllb"] 列表中
    _import_structure["models.nllb"].append("NllbTokenizerFast")
    # 将 "NougatTokenizerFast" 添加到 _import_structure["models.nougat"] 列表中
    _import_structure["models.nougat"].append("NougatTokenizerFast")
    # 将 "OpenAIGPTTokenizerFast" 添加到 _import_structure["models.openai"] 列表中
    _import_structure["models.openai"].append("OpenAIGPTTokenizerFast")
    # 将 "PegasusTokenizerFast" 添加到 _import_structure["models.pegasus"] 列表中
    _import_structure["models.pegasus"].append("PegasusTokenizerFast")
    # 将 "Qwen2TokenizerFast" 添加到 _import_structure["models.qwen2"] 列表中
    _import_structure["models.qwen2"].append("Qwen2TokenizerFast")
    # 将 "RealmTokenizerFast" 添加到 _import_structure["models.realm"] 列表中
    _import_structure["models.realm"].append("RealmTokenizerFast")
    # 将 "ReformerTokenizerFast" 添加到 _import_structure["models.reformer"] 列表中
    _import_structure["models.reformer"].append("ReformerTokenizerFast")
    # 将 "RemBertTokenizerFast" 添加到 _import_structure["models.rembert"] 列表中
    _import_structure["models.rembert"].append("RemBertTokenizerFast")
    # 将 "RobertaTokenizerFast" 添加到 _import_structure["models.roberta"] 列表中
    _import_structure["models.roberta"].append("RobertaTokenizerFast")
    # 将 "RoFormerTokenizerFast" 添加到 _import_structure["models.roformer"] 列表中
    _import_structure["models.roformer"].append("RoFormerTokenizerFast")
    # 将 "SeamlessM4TTokenizerFast" 添加到 _import_structure["models.seamless_m4t"] 列表中
    _import_structure["models.seamless_m4t"].append("SeamlessM4TTokenizerFast")
    # 将 "SplinterTokenizerFast" 添加到 _import_structure["models.splinter"] 列表中
    _import_structure["models.splinter"].append("SplinterTokenizerFast")
    # 将 "SqueezeBertTokenizerFast" 添加到 _import_structure["models.squeezebert"] 列表中
    _import_structure["models.squeezebert"].append("SqueezeBertTokenizerFast")
    # 将 "T5TokenizerFast" 添加到 _import_structure["models.t5"] 列表中
    _import_structure["models.t5"].append("T5TokenizerFast")
    # 将 "UdopTokenizerFast" 添加到 _import_structure["models.udop"] 列表中
    _import_structure["models.udop"].append("UdopTokenizerFast")
    # 将 "WhisperTokenizerFast" 添加到 _import_structure["models.whisper"] 列表中
    _import_structure["models.whisper"].append("WhisperTokenizerFast")
    # 将 "XGLMTokenizerFast" 添加到 _import_structure["models.xglm"] 列表中
    _import_structure["models.xglm"].append("XGLMTokenizerFast")
    # 将 "XLMRobertaTokenizerFast" 添加到 _import_structure["models.xlm_roberta"] 列表中
    _import_structure["models.xlm_roberta"].append("XLMRobertaTokenizerFast")
    # 将 "XLNetTokenizerFast" 添加到 _import_structure["models.xlnet"] 列表中
    _import_structure["models.xlnet"].append("XLNetTokenizerFast")
    # 将 "PreTrainedTokenizerFast" 添加到 _import_structure["tokenization_utils_fast"] 列表中
    _import_structure["tokenization_utils_fast"] = ["PreTrainedTokenizerFast"]
# 检查是否安装了句子分词器和分词器模块,如果未安装则引发自定义的OptionalDependencyNotAvailable异常
try:
    if not (is_sentencepiece_available() and is_tokenizers_available()):
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    # 导入替代的虚拟模块,用于句子分词器和分词器
    from .utils import dummy_sentencepiece_and_tokenizers_objects

    # 将虚拟模块中的非私有名称添加到_import_structure字典中
    _import_structure["utils.dummy_sentencepiece_and_tokenizers_objects"] = [
        name for name in dir(dummy_sentencepiece_and_tokenizers_objects) if not name.startswith("_")
    ]
else:
    # 如果依赖可用,则将相关名称添加到_import_structure字典中的"convert_slow_tokenizer"键下
    _import_structure["convert_slow_tokenizer"] = [
        "SLOW_TO_FAST_CONVERTERS",
        "convert_slow_tokenizer",
    ]

# Tensorflow-text-specific objects
# 检查是否安装了TensorFlow Text模块,如果未安装则引发自定义的OptionalDependencyNotAvailable异常
try:
    if not is_tensorflow_text_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    # 导入替代的虚拟模块,用于TensorFlow Text
    from .utils import dummy_tensorflow_text_objects

    # 将虚拟模块中的非私有名称添加到_import_structure字典中
    _import_structure["utils.dummy_tensorflow_text_objects"] = [
        name for name in dir(dummy_tensorflow_text_objects) if not name.startswith("_")
    ]
else:
    # 如果依赖可用,则将"TFBertTokenizer"添加到"models.bert"键对应的列表中
    _import_structure["models.bert"].append("TFBertTokenizer")

# keras-nlp-specific objects
# 检查是否安装了Keras NLP模块,如果未安装则引发自定义的OptionalDependencyNotAvailable异常
try:
    if not is_keras_nlp_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    # 导入替代的虚拟模块,用于Keras NLP
    from .utils import dummy_keras_nlp_objects

    # 将虚拟模块中的非私有名称添加到_import_structure字典中
    _import_structure["utils.dummy_keras_nlp_objects"] = [
        name for name in dir(dummy_keras_nlp_objects) if not name.startswith("_")
    ]
else:
    # 如果依赖可用,则将"TFGPT2Tokenizer"添加到"models.gpt2"键对应的列表中
    _import_structure["models.gpt2"].append("TFGPT2Tokenizer")

# Vision-specific objects
# 检查是否安装了Vision模块,如果未安装则引发自定义的OptionalDependencyNotAvailable异常
try:
    if not is_vision_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    # 导入替代的虚拟模块,用于Vision
    from .utils import dummy_vision_objects

    # 将虚拟模块中的非私有名称添加到_import_structure字典中
    _import_structure["utils.dummy_vision_objects"] = [
        name for name in dir(dummy_vision_objects) if not name.startswith("_")
    ]
else:
    # 如果依赖可用,则按需添加各种Vision模型处理器到对应的_import_structure字典中的不同键下
    _import_structure["image_processing_utils"] = ["ImageProcessingMixin"]
    _import_structure["image_utils"] = ["ImageFeatureExtractionMixin"]
    _import_structure["models.beit"].extend(["BeitFeatureExtractor", "BeitImageProcessor"])
    _import_structure["models.bit"].extend(["BitImageProcessor"])
    _import_structure["models.blip"].extend(["BlipImageProcessor"])
    _import_structure["models.bridgetower"].append("BridgeTowerImageProcessor")
    _import_structure["models.chinese_clip"].extend(["ChineseCLIPFeatureExtractor", "ChineseCLIPImageProcessor"])
    _import_structure["models.clip"].extend(["CLIPFeatureExtractor", "CLIPImageProcessor"])
    _import_structure["models.conditional_detr"].extend(
        ["ConditionalDetrFeatureExtractor", "ConditionalDetrImageProcessor"]
    )
    _import_structure["models.convnext"].extend(["ConvNextFeatureExtractor", "ConvNextImageProcessor"])
    _import_structure["models.deformable_detr"].extend(
        ["DeformableDetrFeatureExtractor", "DeformableDetrImageProcessor"]
    )
    _import_structure["models.deit"].extend(["DeiTFeatureExtractor", "DeiTImageProcessor"])
    _import_structure["models.deta"].append("DetaImageProcessor")
    # 将 "models.detr" 模块下的 "DetrFeatureExtractor" 和 "DetrImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.detr"].extend(["DetrFeatureExtractor", "DetrImageProcessor"])
    
    # 将 "models.donut" 模块下的 "DonutFeatureExtractor" 和 "DonutImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.donut"].extend(["DonutFeatureExtractor", "DonutImageProcessor"])
    
    # 将 "models.dpt" 模块下的 "DPTFeatureExtractor" 和 "DPTImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.dpt"].extend(["DPTFeatureExtractor", "DPTImageProcessor"])
    
    # 将 "models.efficientformer" 模块下的 "EfficientFormerImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.efficientformer"].append("EfficientFormerImageProcessor")
    
    # 将 "models.efficientnet" 模块下的 "EfficientNetImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.efficientnet"].append("EfficientNetImageProcessor")
    
    # 将 "models.flava" 模块下的 "FlavaFeatureExtractor", "FlavaImageProcessor" 和 "FlavaProcessor" 添加到 _import_structure 字典中
    _import_structure["models.flava"].extend(["FlavaFeatureExtractor", "FlavaImageProcessor", "FlavaProcessor"])
    
    # 将 "models.fuyu" 模块下的 "FuyuImageProcessor" 和 "FuyuProcessor" 添加到 _import_structure 字典中
    _import_structure["models.fuyu"].extend(["FuyuImageProcessor", "FuyuProcessor"])
    
    # 将 "models.glpn" 模块下的 "GLPNFeatureExtractor" 和 "GLPNImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.glpn"].extend(["GLPNFeatureExtractor", "GLPNImageProcessor"])
    
    # 将 "models.idefics" 模块下的 "IdeficsImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.idefics"].extend(["IdeficsImageProcessor"])
    
    # 将 "models.imagegpt" 模块下的 "ImageGPTFeatureExtractor" 和 "ImageGPTImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.imagegpt"].extend(["ImageGPTFeatureExtractor", "ImageGPTImageProcessor"])
    
    # 将 "models.layoutlmv2" 模块下的 "LayoutLMv2FeatureExtractor" 和 "LayoutLMv2ImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.layoutlmv2"].extend(["LayoutLMv2FeatureExtractor", "LayoutLMv2ImageProcessor"])
    
    # 将 "models.layoutlmv3" 模块下的 "LayoutLMv3FeatureExtractor" 和 "LayoutLMv3ImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.layoutlmv3"].extend(["LayoutLMv3FeatureExtractor", "LayoutLMv3ImageProcessor"])
    
    # 将 "models.levit" 模块下的 "LevitFeatureExtractor" 和 "LevitImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.levit"].extend(["LevitFeatureExtractor", "LevitImageProcessor"])
    
    # 将 "models.llava_next" 模块下的 "LlavaNextImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.llava_next"].append("LlavaNextImageProcessor")
    
    # 将 "models.mask2former" 模块下的 "Mask2FormerImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.mask2former"].append("Mask2FormerImageProcessor")
    
    # 将 "models.maskformer" 模块下的 "MaskFormerFeatureExtractor" 和 "MaskFormerImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.maskformer"].extend(["MaskFormerFeatureExtractor", "MaskFormerImageProcessor"])
    
    # 将 "models.mobilenet_v1" 模块下的 "MobileNetV1FeatureExtractor" 和 "MobileNetV1ImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.mobilenet_v1"].extend(["MobileNetV1FeatureExtractor", "MobileNetV1ImageProcessor"])
    
    # 将 "models.mobilenet_v2" 模块下的 "MobileNetV2FeatureExtractor" 和 "MobileNetV2ImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.mobilenet_v2"].extend(["MobileNetV2FeatureExtractor", "MobileNetV2ImageProcessor"])
    
    # 将 "models.mobilevit" 模块下的 "MobileViTFeatureExtractor" 和 "MobileViTImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.mobilevit"].extend(["MobileViTFeatureExtractor", "MobileViTImageProcessor"])
    
    # 将 "models.nougat" 模块下的 "NougatImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.nougat"].append("NougatImageProcessor")
    
    # 将 "models.oneformer" 模块下的 "OneFormerImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.oneformer"].extend(["OneFormerImageProcessor"])
    
    # 将 "models.owlv2" 模块下的 "Owlv2ImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.owlv2"].append("Owlv2ImageProcessor")
    
    # 将 "models.owlvit" 模块下的 "OwlViTFeatureExtractor" 和 "OwlViTImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.owlvit"].extend(["OwlViTFeatureExtractor", "OwlViTImageProcessor"])
    
    # 将 "models.perceiver" 模块下的 "PerceiverFeatureExtractor" 和 "PerceiverImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.perceiver"].extend(["PerceiverFeatureExtractor", "PerceiverImageProcessor"])
    
    # 将 "models.pix2struct" 模块下的 "Pix2StructImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.pix2struct"].extend(["Pix2StructImageProcessor"])
    
    # 将 "models.poolformer" 模块下的 "PoolFormerFeatureExtractor" 和 "PoolFormerImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.poolformer"].extend(["PoolFormerFeatureExtractor", "PoolFormerImageProcessor"])
    
    # 将 "models.pvt" 模块下的 "PvtImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.pvt"].extend(["PvtImageProcessor"])
    
    # 将 "models.sam" 模块下的 "SamImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.sam"].extend(["SamImageProcessor"])
    
    # 将 "models.segformer" 模块下的 "SegformerFeatureExtractor" 和 "SegformerImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.segformer"].extend(["SegformerFeatureExtractor", "SegformerImageProcessor"])
    
    # 将 "models.seggpt" 模块下的 "SegGptImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.seggpt"].extend(["SegGptImageProcessor"])
    
    # 将 "models.siglip" 模块下的 "SiglipImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.siglip"].append("SiglipImageProcessor")
    
    # 将 "models.superpoint" 模块下的 "SuperPointImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.superpoint"].extend(["SuperPointImageProcessor"])
    
    # 将 "models.swin2sr" 模块下的 "Swin2SRImageProcessor" 添加到 _import_structure 字典中
    _import_structure["models.swin2sr"].append("Swin2SRImageProcessor")
    # 将 "TvltImageProcessor" 添加到 _import_structure 字典中的 "models.tvlt" 键对应的列表中
    _import_structure["models.tvlt"].append("TvltImageProcessor")
    
    # 将 "TvpImageProcessor" 添加到 _import_structure 字典中的 "models.tvp" 键对应的列表中
    _import_structure["models.tvp"].append("TvpImageProcessor")
    
    # 将 ["VideoMAEFeatureExtractor", "VideoMAEImageProcessor"] 扩展添加到 _import_structure 字典中的 "models.videomae" 键对应的列表中
    _import_structure["models.videomae"].extend(["VideoMAEFeatureExtractor", "VideoMAEImageProcessor"])
    
    # 将 ["ViltFeatureExtractor", "ViltImageProcessor", "ViltProcessor"] 扩展添加到 _import_structure 字典中的 "models.vilt" 键对应的列表中
    _import_structure["models.vilt"].extend(["ViltFeatureExtractor", "ViltImageProcessor", "ViltProcessor"])
    
    # 将 ["ViTFeatureExtractor", "ViTImageProcessor"] 扩展添加到 _import_structure 字典中的 "models.vit" 键对应的列表中
    _import_structure["models.vit"].extend(["ViTFeatureExtractor", "ViTImageProcessor"])
    
    # 将 ["ViTHybridImageProcessor"] 扩展添加到 _import_structure 字典中的 "models.vit_hybrid" 键对应的列表中
    _import_structure["models.vit_hybrid"].extend(["ViTHybridImageProcessor"])
    
    # 将 "VitMatteImageProcessor" 添加到 _import_structure 字典中的 "models.vitmatte" 键对应的列表中
    _import_structure["models.vitmatte"].append("VitMatteImageProcessor")
    
    # 将 "VivitImageProcessor" 添加到 _import_structure 字典中的 "models.vivit" 键对应的列表中
    _import_structure["models.vivit"].append("VivitImageProcessor")
    
    # 将 ["YolosFeatureExtractor", "YolosImageProcessor"] 扩展添加到 _import_structure 字典中的 "models.yolos" 键对应的列表中
    _import_structure["models.yolos"].extend(["YolosFeatureExtractor", "YolosImageProcessor"])
# 尝试检测是否存在 PyTorch 库
try:
    # 如果 PyTorch 不可用,则抛出 OptionalDependencyNotAvailable 异常
    if not is_torch_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    # 导入 dummy_pt_objects 模块替代
    from .utils import dummy_pt_objects

    # 将 dummy_pt_objects 模块内的非下划线开头的所有名称加入 _import_structure
    _import_structure["utils.dummy_pt_objects"] = [name for name in dir(dummy_pt_objects) if not name.startswith("_")]
else:
    # 如果 PyTorch 可用,则分别设置以下模块的导入结构
    _import_structure["activations"] = []
    _import_structure["benchmark.benchmark"] = ["PyTorchBenchmark"]
    _import_structure["benchmark.benchmark_args"] = ["PyTorchBenchmarkArguments"]
    _import_structure["cache_utils"] = ["Cache", "DynamicCache", "SinkCache", "StaticCache"]
    _import_structure["data.datasets"] = [
        "GlueDataset",
        "GlueDataTrainingArguments",
        "LineByLineTextDataset",
        "LineByLineWithRefDataset",
        "LineByLineWithSOPTextDataset",
        "SquadDataset",
        "SquadDataTrainingArguments",
        "TextDataset",
        "TextDatasetForNextSentencePrediction",
    ]
    _import_structure["generation"].extend(
        [
            "AlternatingCodebooksLogitsProcessor",
            "BeamScorer",
            "BeamSearchScorer",
            "ClassifierFreeGuidanceLogitsProcessor",
            "ConstrainedBeamSearchScorer",
            "Constraint",
            "ConstraintListState",
            "DisjunctiveConstraint",
            "EncoderNoRepeatNGramLogitsProcessor",
            "EncoderRepetitionPenaltyLogitsProcessor",
            "EpsilonLogitsWarper",
            "EtaLogitsWarper",
            "ExponentialDecayLengthPenalty",
            "ForcedBOSTokenLogitsProcessor",
            "ForcedEOSTokenLogitsProcessor",
            "ForceTokensLogitsProcessor",
            "GenerationMixin",
            "HammingDiversityLogitsProcessor",
            "InfNanRemoveLogitsProcessor",
            "LogitNormalization",
            "LogitsProcessor",
            "LogitsProcessorList",
            "LogitsWarper",
            "MaxLengthCriteria",
            "MaxTimeCriteria",
            "MinLengthLogitsProcessor",
            "MinNewTokensLengthLogitsProcessor",
            "NoBadWordsLogitsProcessor",
            "NoRepeatNGramLogitsProcessor",
            "PhrasalConstraint",
            "PrefixConstrainedLogitsProcessor",
            "RepetitionPenaltyLogitsProcessor",
            "SequenceBiasLogitsProcessor",
            "StoppingCriteria",
            "StoppingCriteriaList",
            "SuppressTokensAtBeginLogitsProcessor",
            "SuppressTokensLogitsProcessor",
            "TemperatureLogitsWarper",
            "TopKLogitsWarper",
            "TopPLogitsWarper",
            "TypicalLogitsWarper",
            "UnbatchedClassifierFreeGuidanceLogitsProcessor",
            "WhisperTimeStampLogitsProcessor",
        ]
    )
    _import_structure["generation_utils"] = []
    _import_structure["modeling_outputs"] = []
    _import_structure["modeling_utils"] = ["PreTrainedModel"]

    # PyTorch 模型结构的导入部分
    # 将 "models.albert" 模块的导入结构扩展,包括以下内容:
    _import_structure["models.albert"].extend(
        [
            "ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST",  # ALBERT 模型的预训练模型存档列表
            "AlbertForMaskedLM",  # 用于Masked Language Modeling的ALBERT模型
            "AlbertForMultipleChoice",  # 用于多项选择任务的ALBERT模型
            "AlbertForPreTraining",  # ALBERT的预训练模型
            "AlbertForQuestionAnswering",  # 用于问答任务的ALBERT模型
            "AlbertForSequenceClassification",  # 用于序列分类任务的ALBERT模型
            "AlbertForTokenClassification",  # 用于标记分类任务的ALBERT模型
            "AlbertModel",  # ALBERT模型
            "AlbertPreTrainedModel",  # ALBERT预训练模型基类
            "load_tf_weights_in_albert",  # 加载在ALBERT中的TensorFlow权重
        ]
    )

    # 将 "models.align" 模块的导入结构扩展,包括以下内容:
    _import_structure["models.align"].extend(
        [
            "ALIGN_PRETRAINED_MODEL_ARCHIVE_LIST",  # ALIGN模型的预训练模型存档列表
            "AlignModel",  # ALIGN模型
            "AlignPreTrainedModel",  # ALIGN预训练模型基类
            "AlignTextModel",  # ALIGN的文本模型
            "AlignVisionModel",  # ALIGN的视觉模型
        ]
    )

    # 将 "models.altclip" 模块的导入结构扩展,包括以下内容:
    _import_structure["models.altclip"].extend(
        [
            "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST",  # ALTCLIP模型的预训练模型存档列表
            "AltCLIPModel",  # ALTCLIP模型
            "AltCLIPPreTrainedModel",  # ALTCLIP预训练模型基类
            "AltCLIPTextModel",  # ALTCLIP的文本模型
            "AltCLIPVisionModel",  # ALTCLIP的视觉模型
        ]
    )

    # 将 "models.audio_spectrogram_transformer" 模块的导入结构扩展,包括以下内容:
    _import_structure["models.audio_spectrogram_transformer"].extend(
        [
            "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",  # 音频频谱变换器模型的预训练模型存档列表
            "ASTForAudioClassification",  # 用于音频分类任务的AST模型
            "ASTModel",  # AST模型
            "ASTPreTrainedModel",  # AST预训练模型基类
        ]
    )

    # 将 "models.autoformer" 模块的导入结构扩展,包括以下内容:
    _import_structure["models.autoformer"].extend(
        [
            "AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",  # AUTOFORMER模型的预训练模型存档列表
            "AutoformerForPrediction",  # 用于预测任务的Autoformer模型
            "AutoformerModel",  # Autoformer模型
            "AutoformerPreTrainedModel",  # Autoformer预训练模型基类
        ]
    )

    # 将 "models.bark" 模块的导入结构扩展,包括以下内容:
    _import_structure["models.bark"].extend(
        [
            "BARK_PRETRAINED_MODEL_ARCHIVE_LIST",  # BARK模型的预训练模型存档列表
            "BarkCausalModel",  # 用于因果建模的BARK模型
            "BarkCoarseModel",  # 粗粒度任务的BARK模型
            "BarkFineModel",  # 细粒度任务的BARK模型
            "BarkModel",  # BARK模型
            "BarkPreTrainedModel",  # BARK预训练模型基类
            "BarkSemanticModel",  # 语义任务的BARK模型
        ]
    )

    # 将 "models.bart" 模块的导入结构扩展,包括以下内容:
    _import_structure["models.bart"].extend(
        [
            "BART_PRETRAINED_MODEL_ARCHIVE_LIST",  # BART模型的预训练模型存档列表
            "BartForCausalLM",  # 用于因果语言建模的BART模型
            "BartForConditionalGeneration",  # 用于条件生成任务的BART模型
            "BartForQuestionAnswering",  # 用于问答任务的BART模型
            "BartForSequenceClassification",  # 用于序列分类任务的BART模型
            "BartModel",  # BART模型
            "BartPretrainedModel",  # BART预训练模型
            "BartPreTrainedModel",  # BART预训练模型基类
            "PretrainedBartModel",  # 预训练的BART模型
        ]
    )

    # 将 "models.beit" 模块的导入结构扩展,包括以下内容:
    _import_structure["models.beit"].extend(
        [
            "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST",  # BEIT模型的预训练模型存档列表
            "BeitBackbone",  # BEIT的骨干模型
            "BeitForImageClassification",  # 用于图像分类任务的BEIT模型
            "BeitForMaskedImageModeling",  # 用于图像建模任务的BEIT模型
            "BeitForSemanticSegmentation",  # 用于语义分割任务的BEIT模型
            "BeitModel",  # BEIT模型
            "BeitPreTrainedModel",  # BEIT预训练模型基类
        ]
    )
    # 将 "models.bert" 模块中的特定对象列表扩展到 _import_structure 字典中
    _import_structure["models.bert"].extend(
        [
            "BERT_PRETRAINED_MODEL_ARCHIVE_LIST",  # BERT 预训练模型归档列表
            "BertForMaskedLM",                    # 用于遮蔽语言建模的 BERT 模型
            "BertForMultipleChoice",               # 用于多项选择任务的 BERT 模型
            "BertForNextSentencePrediction",       # 用于下一个句子预测任务的 BERT 模型
            "BertForPreTraining",                  # 用于预训练的 BERT 模型
            "BertForQuestionAnswering",            # 用于问答任务的 BERT 模型
            "BertForSequenceClassification",       # 用于序列分类任务的 BERT 模型
            "BertForTokenClassification",          # 用于标记分类任务的 BERT 模型
            "BertLayer",                           # BERT 的层类
            "BertLMHeadModel",                     # BERT 语言建模头模型
            "BertModel",                           # BERT 模型
            "BertPreTrainedModel",                 # BERT 预训练模型基类
            "load_tf_weights_in_bert",             # 加载 TF 格式权重到 BERT 模型中的函数
        ]
    )
    # 将 "models.bert_generation" 模块中的特定对象列表扩展到 _import_structure 字典中
    _import_structure["models.bert_generation"].extend(
        [
            "BertGenerationDecoder",               # Bert Generation 解码器
            "BertGenerationEncoder",               # Bert Generation 编码器
            "BertGenerationPreTrainedModel",       # Bert Generation 预训练模型基类
            "load_tf_weights_in_bert_generation",  # 加载 TF 格式权重到 Bert Generation 模型中的函数
        ]
    )
    # 将 "models.big_bird" 模块中的特定对象列表扩展到 _import_structure 字典中
    _import_structure["models.big_bird"].extend(
        [
            "BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST",   # BigBird 预训练模型归档列表
            "BigBirdForCausalLM",                      # 用于因果语言建模的 BigBird 模型
            "BigBirdForMaskedLM",                      # 用于遮蔽语言建模的 BigBird 模型
            "BigBirdForMultipleChoice",                # 用于多项选择任务的 BigBird 模型
            "BigBirdForPreTraining",                   # 用于预训练的 BigBird 模型
            "BigBirdForQuestionAnswering",             # 用于问答任务的 BigBird 模型
            "BigBirdForSequenceClassification",        # 用于序列分类任务的 BigBird 模型
            "BigBirdForTokenClassification",           # 用于标记分类任务的 BigBird 模型
            "BigBirdLayer",                            # BigBird 的层类
            "BigBirdModel",                            # BigBird 模型
            "BigBirdPreTrainedModel",                  # BigBird 预训练模型基类
            "load_tf_weights_in_big_bird",             # 加载 TF 格式权重到 BigBird 模型中的函数
        ]
    )
    # 将 "models.bigbird_pegasus" 模块中的特定对象列表扩展到 _import_structure 字典中
    _import_structure["models.bigbird_pegasus"].extend(
        [
            "BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST",   # BigBirdPegasus 预训练模型归档列表
            "BigBirdPegasusForCausalLM",                      # 用于因果语言建模的 BigBirdPegasus 模型
            "BigBirdPegasusForConditionalGeneration",         # 用于条件生成任务的 BigBirdPegasus 模型
            "BigBirdPegasusForQuestionAnswering",             # 用于问答任务的 BigBirdPegasus 模型
            "BigBirdPegasusForSequenceClassification",        # 用于序列分类任务的 BigBirdPegasus 模型
            "BigBirdPegasusModel",                           # BigBirdPegasus 模型
            "BigBirdPegasusPreTrainedModel",                 # BigBirdPegasus 预训练模型基类
        ]
    )
    # 将 "models.biogpt" 模块中的特定对象列表扩展到 _import_structure 字典中
    _import_structure["models.biogpt"].extend(
        [
            "BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST",   # BioGpt 预训练模型归档列表
            "BioGptForCausalLM",                      # 用于因果语言建模的 BioGpt 模型
            "BioGptForSequenceClassification",        # 用于序列分类任务的 BioGpt 模型
            "BioGptForTokenClassification",           # 用于标记分类任务的 BioGpt 模型
            "BioGptModel",                            # BioGpt 模型
            "BioGptPreTrainedModel",                  # BioGpt 预训练模型基类
        ]
    )
    # 将 "models.bit" 模块中的特定对象列表扩展到 _import_structure 字典中
    _import_structure["models.bit"].extend(
        [
            "BIT_PRETRAINED_MODEL_ARCHIVE_LIST",    # Bit 预训练模型归档列表
            "BitBackbone",                          # Bit 的骨干网络
            "BitForImageClassification",            # 用于图像分类任务的 Bit 模型
            "BitModel",                             # Bit 模型
            "BitPreTrainedModel",                   # Bit 预训练模型基类
        ]
    )
    # 将 "models.blenderbot" 模块中的特定对象列表扩展到 _import_structure 字典中
    _import_structure["models.blenderbot"].extend(
        [
            "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",   # Blenderbot 预训练模型归档列表
            "BlenderbotForCausalLM",                      # 用于因果语言建模的 Blenderbot 模型
            "BlenderbotForConditionalGeneration",         # 用于条件生成任务的 Blenderbot 模型
            "BlenderbotModel",                            # Blenderbot 模型
            "BlenderbotPreTrainedModel",                  # Blenderbot 预训练模型基类
        ]
    )
    # 将 "models.blenderbot_small" 模块中的特定对象列表扩展到 _import_structure 字典中
    _import_structure["models.blenderbot_small"].extend(
        [
            "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST",   # BlenderbotSmall 预训练模型归档列表
            "BlenderbotSmallForCausalLM",                      # 用于因果语言建模的 BlenderbotSmall 模型
            "BlenderbotSmallForConditionalGeneration",         # 用于条件生成任务的 BlenderbotSmall 模型
            "BlenderbotSmallModel",                            # BlenderbotSmall 模型
            "BlenderbotSmallPreTrainedModel",                  # BlenderbotSmall 预训练模型基类
        ]
    )
    # 将指定模块中的一组预定义字符串和类名添加到_import_structure字典中的models.blip条目中
    _import_structure["models.blip"].extend(
        [
            "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST",  # BLIP预训练模型存档列表
            "BlipForConditionalGeneration",  # 用于条件生成的Blip模型
            "BlipForImageTextRetrieval",  # 用于图像文本检索的Blip模型
            "BlipForQuestionAnswering",  # 用于问答的Blip模型
            "BlipModel",  # Blip模型基类
            "BlipPreTrainedModel",  # Blip预训练模型基类
            "BlipTextModel",  # 用于文本任务的Blip模型
            "BlipVisionModel",  # 用于视觉任务的Blip模型
        ]
    )
    # 将指定模块中的一组预定义字符串和类名添加到_import_structure字典中的models.blip_2条目中
    _import_structure["models.blip_2"].extend(
        [
            "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST",  # BLIP_2预训练模型存档列表
            "Blip2ForConditionalGeneration",  # 用于条件生成的Blip2模型
            "Blip2Model",  # Blip2模型基类
            "Blip2PreTrainedModel",  # Blip2预训练模型基类
            "Blip2QFormerModel",  # Blip2的Q-Former模型
            "Blip2VisionModel",  # 用于视觉任务的Blip2模型
        ]
    )
    # 将指定模块中的一组预定义字符串和类名添加到_import_structure字典中的models.bloom条目中
    _import_structure["models.bloom"].extend(
        [
            "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST",  # BLOOM预训练模型存档列表
            "BloomForCausalLM",  # 用于因果语言建模的Bloom模型
            "BloomForQuestionAnswering",  # 用于问答的Bloom模型
            "BloomForSequenceClassification",  # 用于序列分类的Bloom模型
            "BloomForTokenClassification",  # 用于标记分类的Bloom模型
            "BloomModel",  # Bloom模型基类
            "BloomPreTrainedModel",  # Bloom预训练模型基类
        ]
    )
    # 将指定模块中的一组预定义字符串和类名添加到_import_structure字典中的models.bridgetower条目中
    _import_structure["models.bridgetower"].extend(
        [
            "BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST",  # BRIDGETOWER预训练模型存档列表
            "BridgeTowerForContrastiveLearning",  # 用于对比学习的BridgeTower模型
            "BridgeTowerForImageAndTextRetrieval",  # 用于图像文本检索的BridgeTower模型
            "BridgeTowerForMaskedLM",  # 用于掩蔽语言建模的BridgeTower模型
            "BridgeTowerModel",  # BridgeTower模型基类
            "BridgeTowerPreTrainedModel",  # BridgeTower预训练模型基类
        ]
    )
    # 将指定模块中的一组预定义字符串和类名添加到_import_structure字典中的models.bros条目中
    _import_structure["models.bros"].extend(
        [
            "BROS_PRETRAINED_MODEL_ARCHIVE_LIST",  # BROS预训练模型存档列表
            "BrosForTokenClassification",  # 用于标记分类的Bros模型
            "BrosModel",  # Bros模型基类
            "BrosPreTrainedModel",  # Bros预训练模型基类
            "BrosProcessor",  # Bros处理器
            "BrosSpadeEEForTokenClassification",  # 用于标记分类的Bros Spade EE模型
            "BrosSpadeELForTokenClassification",  # 用于标记分类的Bros Spade EL模型
        ]
    )
    # 将指定模块中的一组预定义字符串和类名添加到_import_structure字典中的models.camembert条目中
    _import_structure["models.camembert"].extend(
        [
            "CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",  # CAMEMBERT预训练模型存档列表
            "CamembertForCausalLM",  # 用于因果语言建模的Camembert模型
            "CamembertForMaskedLM",  # 用于掩蔽语言建模的Camembert模型
            "CamembertForMultipleChoice",  # 用于多项选择任务的Camembert模型
            "CamembertForQuestionAnswering",  # 用于问答的Camembert模型
            "CamembertForSequenceClassification",  # 用于序列分类的Camembert模型
            "CamembertForTokenClassification",  # 用于标记分类的Camembert模型
            "CamembertModel",  # Camembert模型基类
            "CamembertPreTrainedModel",  # Camembert预训练模型基类
        ]
    )
    # 将指定模块中的一组预定义字符串和类名添加到_import_structure字典中的models.canine条目中
    _import_structure["models.canine"].extend(
        [
            "CANINE_PRETRAINED_MODEL_ARCHIVE_LIST",  # CANINE预训练模型存档列表
            "CanineForMultipleChoice",  # 用于多项选择任务的Canine模型
            "CanineForQuestionAnswering",  # 用于问答的Canine模型
            "CanineForSequenceClassification",  # 用于序列分类的Canine模型
            "CanineForTokenClassification",  # 用于标记分类的Canine模型
            "CanineLayer",  # Canine模型的层
            "CanineModel",  # Canine模型基类
            "CaninePreTrainedModel",  # Canine预训练模型基类
            "load_tf_weights_in_canine",  # 加载TensorFlow权重到Canine模型中的函数
        ]
    )
    # 将指定模块中的一组预定义字符串和类名添加到_import_structure字典中的models.chinese_clip条目中
    _import_structure["models.chinese_clip"].extend(
        [
            "CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",  # CHINESE_CLIP预训练模型存档列表
            "ChineseCLIPModel",  # 中文CLIP模型
            "ChineseCLIPPreTrainedModel",  # 中文CLIP预训练模型基类
            "ChineseCLIPTextModel",  # 用于文本任务的中文CLIP模型
            "ChineseCLIPVisionModel",  # 用于视觉任务的中文CLIP模型
        ]
    )
    # 将 "models.clap" 中的模块列表扩展,包括预训练模型存档列表和各个特定模型类
    _import_structure["models.clap"].extend(
        [
            "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ClapAudioModel",
            "ClapAudioModelWithProjection",
            "ClapFeatureExtractor",
            "ClapModel",
            "ClapPreTrainedModel",
            "ClapTextModel",
            "ClapTextModelWithProjection",
        ]
    )
    
    # 将 "models.clip" 中的模块列表扩展,包括预训练模型存档列表和各个特定模型类
    _import_structure["models.clip"].extend(
        [
            "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
            "CLIPForImageClassification",
            "CLIPModel",
            "CLIPPreTrainedModel",
            "CLIPTextModel",
            "CLIPTextModelWithProjection",
            "CLIPVisionModel",
            "CLIPVisionModelWithProjection",
        ]
    )
    
    # 将 "models.clipseg" 中的模块列表扩展,包括预训练模型存档列表和各个特定模型类
    _import_structure["models.clipseg"].extend(
        [
            "CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST",
            "CLIPSegForImageSegmentation",
            "CLIPSegModel",
            "CLIPSegPreTrainedModel",
            "CLIPSegTextModel",
            "CLIPSegVisionModel",
        ]
    )
    
    # 将 "models.clvp" 中的模块列表扩展,包括预训练模型存档列表和各个特定模型类
    _import_structure["models.clvp"].extend(
        [
            "CLVP_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ClvpDecoder",
            "ClvpEncoder",
            "ClvpForCausalLM",
            "ClvpModel",
            "ClvpModelForConditionalGeneration",
            "ClvpPreTrainedModel",
        ]
    )
    
    # 将 "models.codegen" 中的模块列表扩展,包括预训练模型存档列表和各个特定模型类
    _import_structure["models.codegen"].extend(
        [
            "CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST",
            "CodeGenForCausalLM",
            "CodeGenModel",
            "CodeGenPreTrainedModel",
        ]
    )
    
    # 将 "models.cohere" 中的模块列表扩展,包括各个特定模型类
    _import_structure["models.cohere"].extend(
        [
            "CohereForCausalLM",
            "CohereModel",
            "CoherePreTrainedModel",
        ]
    )
    
    # 将 "models.conditional_detr" 中的模块列表扩展,包括预训练模型存档列表和各个特定模型类
    _import_structure["models.conditional_detr"].extend(
        [
            "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ConditionalDetrForObjectDetection",
            "ConditionalDetrForSegmentation",
            "ConditionalDetrModel",
            "ConditionalDetrPreTrainedModel",
        ]
    )
    
    # 将 "models.convbert" 中的模块列表扩展,包括预训练模型存档列表和各个特定模型类
    _import_structure["models.convbert"].extend(
        [
            "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ConvBertForMaskedLM",
            "ConvBertForMultipleChoice",
            "ConvBertForQuestionAnswering",
            "ConvBertForSequenceClassification",
            "ConvBertForTokenClassification",
            "ConvBertLayer",
            "ConvBertModel",
            "ConvBertPreTrainedModel",
            "load_tf_weights_in_convbert",
        ]
    )
    
    # 将 "models.convnext" 中的模块列表扩展,包括预训练模型存档列表和各个特定模型类
    _import_structure["models.convnext"].extend(
        [
            "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ConvNextBackbone",
            "ConvNextForImageClassification",
            "ConvNextModel",
            "ConvNextPreTrainedModel",
        ]
    )
    # 将以下模块的名称列表扩展到_import_structure字典中的对应键
    _import_structure["models.convnextv2"].extend(
        [
            "CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST",  # ConvNextV2模型的预训练模型存档列表
            "ConvNextV2Backbone",  # ConvNextV2的主干模型
            "ConvNextV2ForImageClassification",  # 用于图像分类的ConvNextV2模型
            "ConvNextV2Model",  # ConvNextV2模型
            "ConvNextV2PreTrainedModel",  # ConvNextV2预训练模型
        ]
    )
    # 将以下模块的名称列表扩展到_import_structure字典中的对应键
    _import_structure["models.cpmant"].extend(
        [
            "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST",  # CpmAnt模型的预训练模型存档列表
            "CpmAntForCausalLM",  # 用于因果语言建模的CpmAnt模型
            "CpmAntModel",  # CpmAnt模型
            "CpmAntPreTrainedModel",  # CpmAnt预训练模型
        ]
    )
    # 将以下模块的名称列表扩展到_import_structure字典中的对应键
    _import_structure["models.ctrl"].extend(
        [
            "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST",  # CTRL模型的预训练模型存档列表
            "CTRLForSequenceClassification",  # 用于序列分类的CTRL模型
            "CTRLLMHeadModel",  # CTRL模型的LM头部模型
            "CTRLModel",  # CTRL模型
            "CTRLPreTrainedModel",  # CTRL预训练模型
        ]
    )
    # 将以下模块的名称列表扩展到_import_structure字典中的对应键
    _import_structure["models.cvt"].extend(
        [
            "CVT_PRETRAINED_MODEL_ARCHIVE_LIST",  # CVT模型的预训练模型存档列表
            "CvtForImageClassification",  # 用于图像分类的CVT模型
            "CvtModel",  # CVT模型
            "CvtPreTrainedModel",  # CVT预训练模型
        ]
    )
    # 将以下模块的名称列表扩展到_import_structure字典中的对应键
    _import_structure["models.data2vec"].extend(
        [
            "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST",  # Data2Vec音频模型的预训练模型存档列表
            "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",  # Data2Vec文本模型的预训练模型存档列表
            "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST",  # Data2Vec视觉模型的预训练模型存档列表
            "Data2VecAudioForAudioFrameClassification",  # 用于音频帧分类的Data2Vec音频模型
            "Data2VecAudioForCTC",  # 用于CTC的Data2Vec音频模型
            "Data2VecAudioForSequenceClassification",  # 用于序列分类的Data2Vec音频模型
            "Data2VecAudioForXVector",  # 用于X向量的Data2Vec音频模型
            "Data2VecAudioModel",  # Data2Vec音频模型
            "Data2VecAudioPreTrainedModel",  # Data2Vec音频预训练模型
            "Data2VecTextForCausalLM",  # 用于因果语言建模的Data2Vec文本模型
            "Data2VecTextForMaskedLM",  # 用于掩码语言建模的Data2Vec文本模型
            "Data2VecTextForMultipleChoice",  # 用于多选题的Data2Vec文本模型
            "Data2VecTextForQuestionAnswering",  # 用于问答的Data2Vec文本模型
            "Data2VecTextForSequenceClassification",  # 用于序列分类的Data2Vec文本模型
            "Data2VecTextForTokenClassification",  # 用于标记分类的Data2Vec文本模型
            "Data2VecTextModel",  # Data2Vec文本模型
            "Data2VecTextPreTrainedModel",  # Data2Vec文本预训练模型
            "Data2VecVisionForImageClassification",  # 用于图像分类的Data2Vec视觉模型
            "Data2VecVisionForSemanticSegmentation",  # 用于语义分割的Data2Vec视觉模型
            "Data2VecVisionModel",  # Data2Vec视觉模型
            "Data2VecVisionPreTrainedModel",  # Data2Vec视觉预训练模型
        ]
    )
    # 将以下模块的名称列表扩展到_import_structure字典中的对应键
    _import_structure["models.deberta"].extend(
        [
            "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",  # Deberta模型的预训练模型存档列表
            "DebertaForMaskedLM",  # 用于掩码语言建模的Deberta模型
            "DebertaForQuestionAnswering",  # 用于问答的Deberta模型
            "DebertaForSequenceClassification",  # 用于序列分类的Deberta模型
            "DebertaForTokenClassification",  # 用于标记分类的Deberta模型
            "DebertaModel",  # Deberta模型
            "DebertaPreTrainedModel",  # Deberta预训练模型
        ]
    )
    # 将以下模块的名称列表扩展到_import_structure字典中的对应键
    _import_structure["models.deberta_v2"].extend(
        [
            "DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST",  # DebertaV2模型的预训练模型存档列表
            "DebertaV2ForMaskedLM",  # 用于掩码语言建模的DebertaV2模型
            "DebertaV2ForMultipleChoice",  # 用于多选题的DebertaV2模型
            "DebertaV2ForQuestionAnswering",  # 用于问答的DebertaV2模型
            "DebertaV2ForSequenceClassification",  # 用于序列分类的DebertaV2模型
            "DebertaV2ForTokenClassification",  # 用于标记分类的DebertaV2模型
            "DebertaV2Model",  # DebertaV2模型
            "DebertaV2PreTrainedModel",  # DebertaV2预训练模型
        ]
    )
    _import_structure["models.decision_transformer"].extend(
        [
            "DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "DecisionTransformerGPT2Model",
            "DecisionTransformerGPT2PreTrainedModel",
            "DecisionTransformerModel",
            "DecisionTransformerPreTrainedModel",
        ]
    )
    _import_structure["models.deformable_detr"].extend(
        [
            "DEFORMABLE_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
            "DeformableDetrForObjectDetection",
            "DeformableDetrModel",
            "DeformableDetrPreTrainedModel",
        ]
    )
    _import_structure["models.deit"].extend(
        [
            "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "DeiTForImageClassification",
            "DeiTForImageClassificationWithTeacher",
            "DeiTForMaskedImageModeling",
            "DeiTModel",
            "DeiTPreTrainedModel",
        ]
    )
    _import_structure["models.deprecated.mctct"].extend(
        [
            "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MCTCTForCTC",
            "MCTCTModel",
            "MCTCTPreTrainedModel",
        ]
    )
    _import_structure["models.deprecated.mmbt"].extend(
        [
            "MMBTForClassification",
            "MMBTModel",
            "ModalEmbeddings"
        ]
    )
    _import_structure["models.deprecated.open_llama"].extend(
        [
            "OpenLlamaForCausalLM",
            "OpenLlamaForSequenceClassification",
            "OpenLlamaModel",
            "OpenLlamaPreTrainedModel",
        ]
    )
    _import_structure["models.deprecated.retribert"].extend(
        [
            "RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "RetriBertModel",
            "RetriBertPreTrainedModel",
        ]
    )
    _import_structure["models.deprecated.trajectory_transformer"].extend(
        [
            "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TrajectoryTransformerModel",
            "TrajectoryTransformerPreTrainedModel",
        ]
    )
    _import_structure["models.deprecated.transfo_xl"].extend(
        [
            "TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST",
            "AdaptiveEmbedding",
            "TransfoXLForSequenceClassification",
            "TransfoXLLMHeadModel",
            "TransfoXLModel",
            "TransfoXLPreTrainedModel",
            "load_tf_weights_in_transfo_xl",
        ]
    )
    _import_structure["models.deprecated.van"].extend(
        [
            "VAN_PRETRAINED_MODEL_ARCHIVE_LIST",
            "VanForImageClassification",
            "VanModel",
            "VanPreTrainedModel",
        ]
    )
    _import_structure["models.depth_anything"].extend(
        [
            "DEPTH_ANYTHING_PRETRAINED_MODEL_ARCHIVE_LIST",
            "DepthAnythingForDepthEstimation",
            "DepthAnythingPreTrainedModel",
        ]
    )


注释:


# 扩展导入结构中的 models.decision_transformer,包括预训练模型存档列表和相关模型类
_import_structure["models.decision_transformer"].extend(
    [
        "DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
        "DecisionTransformerGPT2Model",
        "DecisionTransformerGPT2PreTrainedModel",
        "DecisionTransformerModel",
        "DecisionTransformerPreTrainedModel",
    ]
)

# 扩展导入结构中的 models.deformable_detr,包括预训练模型存档列表和相关模型类
_import_structure["models.deformable_detr"].extend(
    [
        "DEFORMABLE_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
        "DeformableDetrForObjectDetection",
        "DeformableDetrModel",
        "DeformableDetrPreTrainedModel",
    ]
)

# 扩展导入结构中的 models.deit,包括预训练模型存档列表和相关模型类
_import_structure["models.deit"].extend(
    [
        "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
        "DeiTForImageClassification",
        "DeiTForImageClassificationWithTeacher",
        "DeiTForMaskedImageModeling",
        "DeiTModel",
        "DeiTPreTrainedModel",
    ]
)

# 扩展导入结构中的 models.deprecated.mctct,包括预训练模型存档列表和相关模型类
_import_structure["models.deprecated.mctct"].extend(
    [
        "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST",
        "MCTCTForCTC",
        "MCTCTModel",
        "MCTCTPreTrainedModel",
    ]
)

# 扩展导入结构中的 models.deprecated.mmbt,包括相关分类和嵌入模型
_import_structure["models.deprecated.mmbt"].extend(
    [
        "MMBTForClassification",
        "MMBTModel",
        "ModalEmbeddings"
    ]
)

# 扩展导入结构中的 models.deprecated.open_llama,包括用于因果语言建模和序列分类的模型
_import_structure["models.deprecated.open_llama"].extend(
    [
        "OpenLlamaForCausalLM",
        "OpenLlamaForSequenceClassification",
        "OpenLlamaModel",
        "OpenLlamaPreTrainedModel",
    ]
)

# 扩展导入结构中的 models.deprecated.retribert,包括预训练模型存档列表和相关模型类
_import_structure["models.deprecated.retribert"].extend(
    [
        "RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
        "RetriBertModel",
        "RetriBertPreTrainedModel",
    ]
)

# 扩展导入结构中的 models.deprecated.trajectory_transformer,包括轨迹转换模型类和预训练模型
_import_structure["models.deprecated.trajectory_transformer"].extend(
    [
        "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
        "TrajectoryTransformerModel",
        "TrajectoryTransformerPreTrainedModel",
    ]
)

# 扩展导入结构中的 models.deprecated.transfo_xl,包括用于序列分类和语言建模的 TransfoXL 相关模型和工具
_import_structure["models.deprecated.transfo_xl"].extend(
    [
        "TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST",
        "AdaptiveEmbedding",
        "TransfoXLForSequenceClassification",
        "TransfoXLLMHeadModel",
        "TransfoXLModel",
        "TransfoXLPreTrainedModel",
        "load_tf_weights_in_transfo_xl",
    ]
)

# 扩展导入结构中的 models.deprecated.van,包括用于图像分类的 Van 模型和相关预训练模型
_import_structure["models.deprecated.van"].extend(
    [
        "VAN_PRETRAINED_MODEL_ARCHIVE_LIST",
        "VanForImageClassification",
        "VanModel",
        "VanPreTrainedModel",
    ]
)

# 扩展导入结构中的 models.depth_anything,包括深度估计相关模型和预训练模型
_import_structure["models.depth_anything"].extend(
    [
        "DEPTH_ANYTHING_PRETRAINED_MODEL_ARCHIVE_LIST",
        "DepthAnythingForDepthEstimation",
        "DepthAnythingPreTrainedModel",
    ]
)
    # 将 "models.deta" 模块的相关对象添加到导入结构中
    _import_structure["models.deta"].extend(
        [
            "DETA_PRETRAINED_MODEL_ARCHIVE_LIST",  # DETA 预训练模型的存档列表
            "DetaForObjectDetection",  # 用于目标检测的 Deta 模型
            "DetaModel",  # Deta 模型
            "DetaPreTrainedModel",  # Deta 预训练模型
        ]
    )
    
    # 将 "models.detr" 模块的相关对象添加到导入结构中
    _import_structure["models.detr"].extend(
        [
            "DETR_PRETRAINED_MODEL_ARCHIVE_LIST",  # DETR 预训练模型的存档列表
            "DetrForObjectDetection",  # 用于目标检测的 Detr 模型
            "DetrForSegmentation",  # 用于分割任务的 Detr 模型
            "DetrModel",  # Detr 模型
            "DetrPreTrainedModel",  # Detr 预训练模型
        ]
    )
    
    # 将 "models.dinat" 模块的相关对象添加到导入结构中
    _import_structure["models.dinat"].extend(
        [
            "DINAT_PRETRAINED_MODEL_ARCHIVE_LIST",  # DINAT 预训练模型的存档列表
            "DinatBackbone",  # Dinat 的骨干网络
            "DinatForImageClassification",  # 用于图像分类的 Dinat 模型
            "DinatModel",  # Dinat 模型
            "DinatPreTrainedModel",  # Dinat 预训练模型
        ]
    )
    
    # 将 "models.dinov2" 模块的相关对象添加到导入结构中
    _import_structure["models.dinov2"].extend(
        [
            "DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST",  # DINOV2 预训练模型的存档列表
            "Dinov2Backbone",  # Dinov2 的骨干网络
            "Dinov2ForImageClassification",  # 用于图像分类的 Dinov2 模型
            "Dinov2Model",  # Dinov2 模型
            "Dinov2PreTrainedModel",  # Dinov2 预训练模型
        ]
    )
    
    # 将 "models.distilbert" 模块的相关对象添加到导入结构中
    _import_structure["models.distilbert"].extend(
        [
            "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",  # DISTILBERT 预训练模型的存档列表
            "DistilBertForMaskedLM",  # 用于遮蔽语言建模任务的 DistilBERT 模型
            "DistilBertForMultipleChoice",  # 用于多项选择任务的 DistilBERT 模型
            "DistilBertForQuestionAnswering",  # 用于问答任务的 DistilBERT 模型
            "DistilBertForSequenceClassification",  # 用于序列分类任务的 DistilBERT 模型
            "DistilBertForTokenClassification",  # 用于标记分类任务的 DistilBERT 模型
            "DistilBertModel",  # DistilBERT 模型
            "DistilBertPreTrainedModel",  # DistilBERT 预训练模型
        ]
    )
    
    # 将 "models.donut" 模块的相关对象添加到导入结构中
    _import_structure["models.donut"].extend(
        [
            "DONUT_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST",  # DONUT SWIN 预训练模型的存档列表
            "DonutSwinModel",  # DonutSwin 模型
            "DonutSwinPreTrainedModel",  # DonutSwin 预训练模型
        ]
    )
    
    # 将 "models.dpr" 模块的相关对象添加到导入结构中
    _import_structure["models.dpr"].extend(
        [
            "DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST",  # DPR 上下文编码器预训练模型的存档列表
            "DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST",  # DPR 问题编码器预训练模型的存档列表
            "DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST",  # DPR 阅读器预训练模型的存档列表
            "DPRContextEncoder",  # DPR 上下文编码器
            "DPRPretrainedContextEncoder",  # DPR 预训练上下文编码器
            "DPRPreTrainedModel",  # DPR 预训练模型
            "DPRPretrainedQuestionEncoder",  # DPR 预训练问题编码器
            "DPRPretrainedReader",  # DPR 预训练阅读器
            "DPRQuestionEncoder",  # DPR 问题编码器
            "DPRReader",  # DPR 阅读器
        ]
    )
    
    # 将 "models.dpt" 模块的相关对象添加到导入结构中
    _import_structure["models.dpt"].extend(
        [
            "DPT_PRETRAINED_MODEL_ARCHIVE_LIST",  # DPT 预训练模型的存档列表
            "DPTForDepthEstimation",  # 用于深度估计任务的 DPT 模型
            "DPTForSemanticSegmentation",  # 用于语义分割任务的 DPT 模型
            "DPTModel",  # DPT 模型
            "DPTPreTrainedModel",  # DPT 预训练模型
        ]
    )
    
    # 将 "models.efficientformer" 模块的相关对象添加到导入结构中
    _import_structure["models.efficientformer"].extend(
        [
            "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",  # EFFICIENTFORMER 预训练模型的存档列表
            "EfficientFormerForImageClassification",  # 用于图像分类的 EfficientFormer 模型
            "EfficientFormerForImageClassificationWithTeacher",  # 带有教师模型的图像分类 EfficientFormer 模型
            "EfficientFormerModel",  # EfficientFormer 模型
            "EfficientFormerPreTrainedModel",  # EfficientFormer 预训练模型
        ]
    )
    
    # 将 "models.efficientnet" 模块的相关对象添加到导入结构中
    _import_structure["models.efficientnet"].extend(
        [
            "EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST",  # EFFICIENTNET 预训练模型的存档列表
            "EfficientNetForImageClassification",  # 用于图像分类的 EfficientNet 模型
            "EfficientNetModel",  # EfficientNet 模型
            "EfficientNetPreTrainedModel",  # EfficientNet 预训练模型
        ]
    )
    # 扩展 _import_structure 字典中 "models.electra" 键的值,添加多个 Electra 相关的模型和常量
    _import_structure["models.electra"].extend(
        [
            "ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ElectraForCausalLM",
            "ElectraForMaskedLM",
            "ElectraForMultipleChoice",
            "ElectraForPreTraining",
            "ElectraForQuestionAnswering",
            "ElectraForSequenceClassification",
            "ElectraForTokenClassification",
            "ElectraModel",
            "ElectraPreTrainedModel",
            "load_tf_weights_in_electra",
        ]
    )
    # 扩展 _import_structure 字典中 "models.encodec" 键的值,添加 Encodec 相关的模型和常量
    _import_structure["models.encodec"].extend(
        [
            "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST",
            "EncodecModel",
            "EncodecPreTrainedModel",
        ]
    )
    # 向 _import_structure 字典中 "models.encoder_decoder" 键的值添加 EncoderDecoderModel
    _import_structure["models.encoder_decoder"].append("EncoderDecoderModel")
    # 扩展 _import_structure 字典中 "models.ernie" 键的值,添加多个 Ernie 相关的模型和常量
    _import_structure["models.ernie"].extend(
        [
            "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ErnieForCausalLM",
            "ErnieForMaskedLM",
            "ErnieForMultipleChoice",
            "ErnieForNextSentencePrediction",
            "ErnieForPreTraining",
            "ErnieForQuestionAnswering",
            "ErnieForSequenceClassification",
            "ErnieForTokenClassification",
            "ErnieModel",
            "ErniePreTrainedModel",
        ]
    )
    # 扩展 _import_structure 字典中 "models.ernie_m" 键的值,添加多个 ErnieM 相关的模型和常量
    _import_structure["models.ernie_m"].extend(
        [
            "ERNIE_M_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ErnieMForInformationExtraction",
            "ErnieMForMultipleChoice",
            "ErnieMForQuestionAnswering",
            "ErnieMForSequenceClassification",
            "ErnieMForTokenClassification",
            "ErnieMModel",
            "ErnieMPreTrainedModel",
        ]
    )
    # 扩展 _import_structure 字典中 "models.esm" 键的值,添加多个 Esm 相关的模型和常量
    _import_structure["models.esm"].extend(
        [
            "ESM_PRETRAINED_MODEL_ARCHIVE_LIST",
            "EsmFoldPreTrainedModel",
            "EsmForMaskedLM",
            "EsmForProteinFolding",
            "EsmForSequenceClassification",
            "EsmForTokenClassification",
            "EsmModel",
            "EsmPreTrainedModel",
        ]
    )
    # 扩展 _import_structure 字典中 "models.falcon" 键的值,添加多个 Falcon 相关的模型和常量
    _import_structure["models.falcon"].extend(
        [
            "FALCON_PRETRAINED_MODEL_ARCHIVE_LIST",
            "FalconForCausalLM",
            "FalconForQuestionAnswering",
            "FalconForSequenceClassification",
            "FalconForTokenClassification",
            "FalconModel",
            "FalconPreTrainedModel",
        ]
    )
    # 扩展 _import_structure 字典中 "models.fastspeech2_conformer" 键的值,添加多个 FastSpeech2 Conformer 相关的模型和常量
    _import_structure["models.fastspeech2_conformer"].extend(
        [
            "FASTSPEECH2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "FastSpeech2ConformerHifiGan",
            "FastSpeech2ConformerModel",
            "FastSpeech2ConformerPreTrainedModel",
            "FastSpeech2ConformerWithHifiGan",
        ]
    )
    # 将 "models.flaubert" 中指定的模块名列表扩展到 _import_structure 字典的值中
    _import_structure["models.flaubert"].extend(
        [
            "FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST",  # 预训练模型存档列表
            "FlaubertForMultipleChoice",  # 用于多项选择任务的 Flaubert 模型
            "FlaubertForQuestionAnswering",  # 用于问答任务的 Flaubert 模型
            "FlaubertForQuestionAnsweringSimple",  # 简化版本的问答任务 Flaubert 模型
            "FlaubertForSequenceClassification",  # 用于序列分类任务的 Flaubert 模型
            "FlaubertForTokenClassification",  # 用于标记分类任务的 Flaubert 模型
            "FlaubertModel",  # Flaubert 模型基类
            "FlaubertPreTrainedModel",  # Flaubert 预训练模型基类
            "FlaubertWithLMHeadModel",  # 带有语言模型头的 Flaubert 模型
        ]
    )
    # 将 "models.flava" 中指定的模块名列表扩展到 _import_structure 字典的值中
    _import_structure["models.flava"].extend(
        [
            "FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST",  # FLAVA 模型预训练模型存档列表
            "FlavaForPreTraining",  # 用于预训练任务的 FLAVA 模型
            "FlavaImageCodebook",  # 图像编码簿模块
            "FlavaImageModel",  # 图像模型
            "FlavaModel",  # FLAVA 模型基类
            "FlavaMultimodalModel",  # 多模态 FLAVA 模型
            "FlavaPreTrainedModel",  # FLAVA 预训练模型基类
            "FlavaTextModel",  # 文本模型
        ]
    )
    # 将 "models.fnet" 中指定的模块名列表扩展到 _import_structure 字典的值中
    _import_structure["models.fnet"].extend(
        [
            "FNET_PRETRAINED_MODEL_ARCHIVE_LIST",  # FNET 模型预训练模型存档列表
            "FNetForMaskedLM",  # 用于掩码语言建模任务的 FNet 模型
            "FNetForMultipleChoice",  # 用于多项选择任务的 FNet 模型
            "FNetForNextSentencePrediction",  # 用于下一个句子预测任务的 FNet 模型
            "FNetForPreTraining",  # 用于预训练任务的 FNet 模型
            "FNetForQuestionAnswering",  # 用于问答任务的 FNet 模型
            "FNetForSequenceClassification",  # 用于序列分类任务的 FNet 模型
            "FNetForTokenClassification",  # 用于标记分类任务的 FNet 模型
            "FNetLayer",  # FNet 模型的层
            "FNetModel",  # FNet 模型基类
            "FNetPreTrainedModel",  # FNet 预训练模型基类
        ]
    )
    # 将 "models.focalnet" 中指定的模块名列表扩展到 _import_structure 字典的值中
    _import_structure["models.focalnet"].extend(
        [
            "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST",  # FOCALNET 模型预训练模型存档列表
            "FocalNetBackbone",  # FocalNet 模型的骨干网络
            "FocalNetForImageClassification",  # 用于图像分类任务的 FocalNet 模型
            "FocalNetForMaskedImageModeling",  # 用于遮罩图像建模任务的 FocalNet 模型
            "FocalNetModel",  # FocalNet 模型基类
            "FocalNetPreTrainedModel",  # FocalNet 预训练模型基类
        ]
    )
    # 将 "models.fsmt" 中指定的模块名列表扩展到 _import_structure 字典的值中
    _import_structure["models.fsmt"].extend(["FSMTForConditionalGeneration", "FSMTModel", "PretrainedFSMTModel"])
    # 将 "models.funnel" 中指定的模块名列表扩展到 _import_structure 字典的值中
    _import_structure["models.funnel"].extend(
        [
            "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",  # FUNNEL 模型预训练模型存档列表
            "FunnelBaseModel",  # Funnel 模型基类
            "FunnelForMaskedLM",  # 用于掩码语言建模任务的 Funnel 模型
            "FunnelForMultipleChoice",  # 用于多项选择任务的 Funnel 模型
            "FunnelForPreTraining",  # 用于预训练任务的 Funnel 模型
            "FunnelForQuestionAnswering",  # 用于问答任务的 Funnel 模型
            "FunnelForSequenceClassification",  # 用于序列分类任务的 Funnel 模型
            "FunnelForTokenClassification",  # 用于标记分类任务的 Funnel 模型
            "FunnelModel",  # Funnel 模型基类
            "FunnelPreTrainedModel",  # Funnel 预训练模型基类
            "load_tf_weights_in_funnel",  # 加载 TensorFlow 权重到 Funnel 模型中的函数
        ]
    )
    # 将 "models.fuyu" 中指定的模块名列表扩展到 _import_structure 字典的值中
    _import_structure["models.fuyu"].extend(["FuyuForCausalLM", "FuyuPreTrainedModel"])
    # 将 "models.gemma" 中指定的模块名列表扩展到 _import_structure 字典的值中
    _import_structure["models.gemma"].extend(
        [
            "GemmaForCausalLM",  # 用于因果语言建模任务的 Gemma 模型
            "GemmaForSequenceClassification",  # 用于序列分类任务的 Gemma 模型
            "GemmaModel",  # Gemma 模型基类
            "GemmaPreTrainedModel",  # Gemma 预训练模型基类
        ]
    )
    # 将 "models.git" 中指定的模块名列表扩展到 _import_structure 字典的值中
    _import_structure["models.git"].extend(
        [
            "GIT_PRETRAINED_MODEL_ARCHIVE_LIST",  # GIT 模型预训练模型存档列表
            "GitForCausalLM",  # 用于因果语言建模任务的 Git 模型
            "GitModel",  # Git 模型基类
            "GitPreTrainedModel",  # Git 预训练模型基类
            "GitVisionModel",  # Git 视觉模型
        ]
    )
    # 将 "models.glpn" 中指定的模块名列表扩展到 _import_structure 字典的值中
    _import_structure["models.glpn"].extend(
        [
            "GLPN_PRETRAINED_MODEL_ARCHIVE_LIST",  # GLPN 模型预训练模型存档列表
            "GLPNForDepthEstimation",  # 用于深度估计任务的 GLPN 模型
            "GLPNModel",  # GLPN 模型基类
            "GLPNPreTrainedModel",  # GLPN 预训练模型基类
        ]
    )
    # 将指定的模型模块导入结构中,并扩展模块列表
    _import_structure["models.gpt2"].extend(
        [
            "GPT2_PRETRAINED_MODEL_ARCHIVE_LIST",   # GPT-2 预训练模型存档列表
            "GPT2DoubleHeadsModel",                 # GPT-2 双头模型
            "GPT2ForQuestionAnswering",             # GPT-2 问答模型
            "GPT2ForSequenceClassification",       # GPT-2 序列分类模型
            "GPT2ForTokenClassification",          # GPT-2 标记分类模型
            "GPT2LMHeadModel",                     # GPT-2 语言模型头
            "GPT2Model",                           # GPT-2 模型
            "GPT2PreTrainedModel",                 # GPT-2 预训练模型基类
            "load_tf_weights_in_gpt2",             # 加载 TensorFlow 权重到 GPT-2 模型
        ]
    )
    # 将大代码模块的相关类名添加到导入结构中
    _import_structure["models.gpt_bigcode"].extend(
        [
            "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST",    # 大代码预训练模型存档列表
            "GPTBigCodeForCausalLM",                        # 大代码因果语言模型
            "GPTBigCodeForSequenceClassification",          # 大代码序列分类模型
            "GPTBigCodeForTokenClassification",             # 大代码标记分类模型
            "GPTBigCodeModel",                              # 大代码模型
            "GPTBigCodePreTrainedModel",                    # 大代码预训练模型基类
        ]
    )
    # 将 GPT-Neo 模块的相关类名添加到导入结构中
    _import_structure["models.gpt_neo"].extend(
        [
            "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST",    # GPT-Neo 预训练模型存档列表
            "GPTNeoForCausalLM",                        # GPT-Neo 因果语言模型
            "GPTNeoForQuestionAnswering",               # GPT-Neo 问答模型
            "GPTNeoForSequenceClassification",          # GPT-Neo 序列分类模型
            "GPTNeoForTokenClassification",             # GPT-Neo 标记分类模型
            "GPTNeoModel",                              # GPT-Neo 模型
            "GPTNeoPreTrainedModel",                    # GPT-Neo 预训练模型基类
            "load_tf_weights_in_gpt_neo",               # 加载 TensorFlow 权重到 GPT-Neo 模型
        ]
    )
    # 将 GPT-NeoX 模块的相关类名添加到导入结构中
    _import_structure["models.gpt_neox"].extend(
        [
            "GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST",   # GPT-NeoX 预训练模型存档列表
            "GPTNeoXForCausalLM",                       # GPT-NeoX 因果语言模型
            "GPTNeoXForQuestionAnswering",              # GPT-NeoX 问答模型
            "GPTNeoXForSequenceClassification",         # GPT-NeoX 序列分类模型
            "GPTNeoXForTokenClassification",            # GPT-NeoX 标记分类模型
            "GPTNeoXLayer",                             # GPT-NeoX 模型层
            "GPTNeoXModel",                             # GPT-NeoX 模型
            "GPTNeoXPreTrainedModel",                   # GPT-NeoX 预训练模型基类
        ]
    )
    # 将 GPT-NeoX 日本语模块的相关类名添加到导入结构中
    _import_structure["models.gpt_neox_japanese"].extend(
        [
            "GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST",   # GPT-NeoX 日本语预训练模型存档列表
            "GPTNeoXJapaneseForCausalLM",                        # GPT-NeoX 日本语因果语言模型
            "GPTNeoXJapaneseLayer",                              # GPT-NeoX 日本语模型层
            "GPTNeoXJapaneseModel",                              # GPT-NeoX 日本语模型
            "GPTNeoXJapanesePreTrainedModel",                    # GPT-NeoX 日本语预训练模型基类
        ]
    )
    # 将 GPT-J 模块的相关类名添加到导入结构中
    _import_structure["models.gptj"].extend(
        [
            "GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST",    # GPT-J 预训练模型存档列表
            "GPTJForCausalLM",                        # GPT-J 因果语言模型
            "GPTJForQuestionAnswering",               # GPT-J 问答模型
            "GPTJForSequenceClassification",          # GPT-J 序列分类模型
            "GPTJModel",                              # GPT-J 模型
            "GPTJPreTrainedModel",                    # GPT-J 预训练模型基类
        ]
    )
    # 将 GPT-SAN 日本语模块的相关类名添加到导入结构中
    _import_structure["models.gptsan_japanese"].extend(
        [
            "GPTSAN_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST",    # GPT-SAN 日本语预训练模型存档列表
            "GPTSanJapaneseForConditionalGeneration",           # GPT-SAN 日本语条件生成模型
            "GPTSanJapaneseModel",                              # GPT-SAN 日本语模型
            "GPTSanJapanesePreTrainedModel",                    # GPT-SAN 日本语预训练模型基类
        ]
    )
    # 将 Graphormer 模块的相关类名添加到导入结构中
    _import_structure["models.graphormer"].extend(
        [
            "GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST",    # Graphormer 预训练模型存档列表
            "GraphormerForGraphClassification",            # Graphormer 图分类模型
            "GraphormerModel",                             # Graphormer 模型
            "GraphormerPreTrainedModel",                   # Graphormer 预训练模型基类
        ]
    )
    # 将 GroupViT 模块的相关类名添加到导入结构中
    _import_structure["models.groupvit"].extend(
        [
            "GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",    # GroupViT 预训练模型存档列表
            "GroupViTModel",                             # GroupViT 模型
            "GroupViTPreTrainedModel",                   # GroupViT 预训练模型基类
            "GroupViTTextModel",                         # GroupViT 文本模型
            "GroupViTVisionModel",                       # GroupViT 视觉模型
        ]
    )
    # 将 "models.hubert" 中的模块名称列表扩展,包括预训练模型存档列表和各种 Hubert 模型类
    _import_structure["models.hubert"].extend(
        [
            "HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "HubertForCTC",
            "HubertForSequenceClassification",
            "HubertModel",
            "HubertPreTrainedModel",
        ]
    )
    # 将 "models.ibert" 中的模块名称列表扩展,包括预训练模型存档列表和各种 IBert 模型类
    _import_structure["models.ibert"].extend(
        [
            "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "IBertForMaskedLM",
            "IBertForMultipleChoice",
            "IBertForQuestionAnswering",
            "IBertForSequenceClassification",
            "IBertForTokenClassification",
            "IBertModel",
            "IBertPreTrainedModel",
        ]
    )
    # 将 "models.idefics" 中的模块名称列表扩展,包括预训练模型存档列表和各种 IDEFICS 模型类
    _import_structure["models.idefics"].extend(
        [
            "IDEFICS_PRETRAINED_MODEL_ARCHIVE_LIST",
            "IdeficsForVisionText2Text",
            "IdeficsModel",
            "IdeficsPreTrainedModel",
            "IdeficsProcessor",
        ]
    )
    # 将 "models.imagegpt" 中的模块名称列表扩展,包括预训练模型存档列表和各种 ImageGPT 模型类以及相关函数
    _import_structure["models.imagegpt"].extend(
        [
            "IMAGEGPT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ImageGPTForCausalImageModeling",
            "ImageGPTForImageClassification",
            "ImageGPTModel",
            "ImageGPTPreTrainedModel",
            "load_tf_weights_in_imagegpt",
        ]
    )
    # 将 "models.informer" 中的模块名称列表扩展,包括预训练模型存档列表和各种 Informer 模型类
    _import_structure["models.informer"].extend(
        [
            "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "InformerForPrediction",
            "InformerModel",
            "InformerPreTrainedModel",
        ]
    )
    # 将 "models.instructblip" 中的模块名称列表扩展,包括预训练模型存档列表和各种 InstructBlip 模型类
    _import_structure["models.instructblip"].extend(
        [
            "INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
            "InstructBlipForConditionalGeneration",
            "InstructBlipPreTrainedModel",
            "InstructBlipQFormerModel",
            "InstructBlipVisionModel",
        ]
    )
    # 将 "models.jukebox" 中的模块名称列表扩展,包括预训练模型存档列表和各种 Jukebox 模型类
    _import_structure["models.jukebox"].extend(
        [
            "JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST",
            "JukeboxModel",
            "JukeboxPreTrainedModel",
            "JukeboxPrior",
            "JukeboxVQVAE",
        ]
    )
    # 将 "models.kosmos2" 中的模块名称列表扩展,包括预训练模型存档列表和各种 Kosmos2 模型类
    _import_structure["models.kosmos2"].extend(
        [
            "KOSMOS2_PRETRAINED_MODEL_ARCHIVE_LIST",
            "Kosmos2ForConditionalGeneration",
            "Kosmos2Model",
            "Kosmos2PreTrainedModel",
        ]
    )
    # 将 "models.layoutlm" 中的模块名称列表扩展,包括预训练模型存档列表和各种 LayoutLM 模型类
    _import_structure["models.layoutlm"].extend(
        [
            "LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST",
            "LayoutLMForMaskedLM",
            "LayoutLMForQuestionAnswering",
            "LayoutLMForSequenceClassification",
            "LayoutLMForTokenClassification",
            "LayoutLMModel",
            "LayoutLMPreTrainedModel",
        ]
    )
    # 将 "models.layoutlmv2" 中的模块名称列表扩展,包括预训练模型存档列表和各种 LayoutLMv2 模型类
    _import_structure["models.layoutlmv2"].extend(
        [
            "LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST",
            "LayoutLMv2ForQuestionAnswering",
            "LayoutLMv2ForSequenceClassification",
            "LayoutLMv2ForTokenClassification",
            "LayoutLMv2Model",
            "LayoutLMv2PreTrainedModel",
        ]
    )
    )
    # 扩展 _import_structure 中 "models.layoutlmv3" 的列表,添加以下条目
    _import_structure["models.layoutlmv3"].extend(
        [
            "LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST",
            "LayoutLMv3ForQuestionAnswering",
            "LayoutLMv3ForSequenceClassification",
            "LayoutLMv3ForTokenClassification",
            "LayoutLMv3Model",
            "LayoutLMv3PreTrainedModel",
        ]
    )
    # 扩展 _import_structure 中 "models.led" 的列表,添加以下条目
    _import_structure["models.led"].extend(
        [
            "LED_PRETRAINED_MODEL_ARCHIVE_LIST",
            "LEDForConditionalGeneration",
            "LEDForQuestionAnswering",
            "LEDForSequenceClassification",
            "LEDModel",
            "LEDPreTrainedModel",
        ]
    )
    # 扩展 _import_structure 中 "models.levit" 的列表,添加以下条目
    _import_structure["models.levit"].extend(
        [
            "LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "LevitForImageClassification",
            "LevitForImageClassificationWithTeacher",
            "LevitModel",
            "LevitPreTrainedModel",
        ]
    )
    # 扩展 _import_structure 中 "models.lilt" 的列表,添加以下条目
    _import_structure["models.lilt"].extend(
        [
            "LILT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "LiltForQuestionAnswering",
            "LiltForSequenceClassification",
            "LiltForTokenClassification",
            "LiltModel",
            "LiltPreTrainedModel",
        ]
    )
    # 扩展 _import_structure 中 "models.llama" 的列表,添加以下条目
    _import_structure["models.llama"].extend(
        [
            "LlamaForCausalLM",
            "LlamaForQuestionAnswering",
            "LlamaForSequenceClassification",
            "LlamaModel",
            "LlamaPreTrainedModel",
        ]
    )
    # 扩展 _import_structure 中 "models.llava" 的列表,添加以下条目
    _import_structure["models.llava"].extend(
        [
            "LLAVA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "LlavaForConditionalGeneration",
            "LlavaPreTrainedModel",
        ]
    )
    # 扩展 _import_structure 中 "models.llava_next" 的列表,添加以下条目
    _import_structure["models.llava_next"].extend(
        [
            "LLAVA_NEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "LlavaNextForConditionalGeneration",
            "LlavaNextPreTrainedModel",
        ]
    )
    # 扩展 _import_structure 中 "models.longformer" 的列表,添加以下条目
    _import_structure["models.longformer"].extend(
        [
            "LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "LongformerForMaskedLM",
            "LongformerForMultipleChoice",
            "LongformerForQuestionAnswering",
            "LongformerForSequenceClassification",
            "LongformerForTokenClassification",
            "LongformerModel",
            "LongformerPreTrainedModel",
            "LongformerSelfAttention",
        ]
    )
    # 扩展 _import_structure 中 "models.longt5" 的列表,添加以下条目
    _import_structure["models.longt5"].extend(
        [
            "LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST",
            "LongT5EncoderModel",
            "LongT5ForConditionalGeneration",
            "LongT5Model",
            "LongT5PreTrainedModel",
        ]
    )
    # 将 "models.luke" 模块的若干标识符添加到 _import_structure 字典中
    _import_structure["models.luke"].extend(
        [
            "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST",
            "LukeForEntityClassification",
            "LukeForEntityPairClassification",
            "LukeForEntitySpanClassification",
            "LukeForMaskedLM",
            "LukeForMultipleChoice",
            "LukeForQuestionAnswering",
            "LukeForSequenceClassification",
            "LukeForTokenClassification",
            "LukeModel",
            "LukePreTrainedModel",
        ]
    )
    
    # 将 "models.lxmert" 模块的若干标识符添加到 _import_structure 字典中
    _import_structure["models.lxmert"].extend(
        [
            "LxmertEncoder",
            "LxmertForPreTraining",
            "LxmertForQuestionAnswering",
            "LxmertModel",
            "LxmertPreTrainedModel",
            "LxmertVisualFeatureEncoder",
            "LxmertXLayer",
        ]
    )
    
    # 将 "models.m2m_100" 模块的若干标识符添加到 _import_structure 字典中
    _import_structure["models.m2m_100"].extend(
        [
            "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST",
            "M2M100ForConditionalGeneration",
            "M2M100Model",
            "M2M100PreTrainedModel",
        ]
    )
    
    # 将 "models.mamba" 模块的若干标识符添加到 _import_structure 字典中
    _import_structure["models.mamba"].extend(
        [
            "MAMBA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MambaForCausalLM",
            "MambaModel",
            "MambaPreTrainedModel",
        ]
    )
    
    # 将 "models.marian" 模块的若干标识符添加到 _import_structure 字典中
    _import_structure["models.marian"].extend(
        ["MarianForCausalLM", "MarianModel", "MarianMTModel"]
    )
    
    # 将 "models.markuplm" 模块的若干标识符添加到 _import_structure 字典中
    _import_structure["models.markuplm"].extend(
        [
            "MARKUPLM_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MarkupLMForQuestionAnswering",
            "MarkupLMForSequenceClassification",
            "MarkupLMForTokenClassification",
            "MarkupLMModel",
            "MarkupLMPreTrainedModel",
        ]
    )
    
    # 将 "models.mask2former" 模块的若干标识符添加到 _import_structure 字典中
    _import_structure["models.mask2former"].extend(
        [
            "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "Mask2FormerForUniversalSegmentation",
            "Mask2FormerModel",
            "Mask2FormerPreTrainedModel",
        ]
    )
    
    # 将 "models.maskformer" 模块的若干标识符添加到 _import_structure 字典中
    _import_structure["models.maskformer"].extend(
        [
            "MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MaskFormerForInstanceSegmentation",
            "MaskFormerModel",
            "MaskFormerPreTrainedModel",
            "MaskFormerSwinBackbone",
        ]
    )
    
    # 将 "models.mbart" 模块的若干标识符添加到 _import_structure 字典中
    _import_structure["models.mbart"].extend(
        [
            "MBartForCausalLM",
            "MBartForConditionalGeneration",
            "MBartForQuestionAnswering",
            "MBartForSequenceClassification",
            "MBartModel",
            "MBartPreTrainedModel",
        ]
    )
    
    # 将 "models.mega" 模块的若干标识符添加到 _import_structure 字典中
    _import_structure["models.mega"].extend(
        [
            "MEGA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MegaForCausalLM",
            "MegaForMaskedLM",
            "MegaForMultipleChoice",
            "MegaForQuestionAnswering",
            "MegaForSequenceClassification",
            "MegaForTokenClassification",
            "MegaModel",
            "MegaPreTrainedModel",
        ]
    )
    # 将 "models.megatron_bert" 中指定的模块列表添加到 _import_structure 字典中
    _import_structure["models.megatron_bert"].extend(
        [
            "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MegatronBertForCausalLM",
            "MegatronBertForMaskedLM",
            "MegatronBertForMultipleChoice",
            "MegatronBertForNextSentencePrediction",
            "MegatronBertForPreTraining",
            "MegatronBertForQuestionAnswering",
            "MegatronBertForSequenceClassification",
            "MegatronBertForTokenClassification",
            "MegatronBertModel",
            "MegatronBertPreTrainedModel",
        ]
    )
    # 将 "models.mgp_str" 中指定的模块列表添加到 _import_structure 字典中
    _import_structure["models.mgp_str"].extend(
        [
            "MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MgpstrForSceneTextRecognition",
            "MgpstrModel",
            "MgpstrPreTrainedModel",
        ]
    )
    # 将 "models.mistral" 中指定的模块列表添加到 _import_structure 字典中
    _import_structure["models.mistral"].extend(
        [
            "MistralForCausalLM",
            "MistralForSequenceClassification",
            "MistralModel",
            "MistralPreTrainedModel",
        ]
    )
    # 将 "models.mixtral" 中指定的模块列表添加到 _import_structure 字典中
    _import_structure["models.mixtral"].extend(
        ["MixtralForCausalLM", "MixtralForSequenceClassification", "MixtralModel", "MixtralPreTrainedModel"]
    )
    # 将 "models.mobilebert" 中指定的模块列表添加到 _import_structure 字典中
    _import_structure["models.mobilebert"].extend(
        [
            "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MobileBertForMaskedLM",
            "MobileBertForMultipleChoice",
            "MobileBertForNextSentencePrediction",
            "MobileBertForPreTraining",
            "MobileBertForQuestionAnswering",
            "MobileBertForSequenceClassification",
            "MobileBertForTokenClassification",
            "MobileBertLayer",
            "MobileBertModel",
            "MobileBertPreTrainedModel",
            "load_tf_weights_in_mobilebert",
        ]
    )
    # 将 "models.mobilenet_v1" 中指定的模块列表添加到 _import_structure 字典中
    _import_structure["models.mobilenet_v1"].extend(
        [
            "MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MobileNetV1ForImageClassification",
            "MobileNetV1Model",
            "MobileNetV1PreTrainedModel",
            "load_tf_weights_in_mobilenet_v1",
        ]
    )
    # 将 "models.mobilenet_v2" 中指定的模块列表添加到 _import_structure 字典中
    _import_structure["models.mobilenet_v2"].extend(
        [
            "MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MobileNetV2ForImageClassification",
            "MobileNetV2ForSemanticSegmentation",
            "MobileNetV2Model",
            "MobileNetV2PreTrainedModel",
            "load_tf_weights_in_mobilenet_v2",
        ]
    )
    # 将 "models.mobilevit" 中指定的模块列表添加到 _import_structure 字典中
    _import_structure["models.mobilevit"].extend(
        [
            "MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MobileViTForImageClassification",
            "MobileViTForSemanticSegmentation",
            "MobileViTModel",
            "MobileViTPreTrainedModel",
        ]
    )
    # 将以下模型名称和相关属性扩展到_import_structure字典中的"models.mobilevitv2"
    _import_structure["models.mobilevitv2"].extend(
        [
            "MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST",  # 预训练模型存档列表
            "MobileViTV2ForImageClassification",  # 图像分类的MobileViTV2模型
            "MobileViTV2ForSemanticSegmentation",  # 语义分割的MobileViTV2模型
            "MobileViTV2Model",  # MobileViTV2模型
            "MobileViTV2PreTrainedModel",  # MobileViTV2预训练模型
        ]
    )
    # 将以下模型名称和相关属性扩展到_import_structure字典中的"models.mpnet"
    _import_structure["models.mpnet"].extend(
        [
            "MPNET_PRETRAINED_MODEL_ARCHIVE_LIST",  # MPNet预训练模型存档列表
            "MPNetForMaskedLM",  # 掩码语言建模的MPNet模型
            "MPNetForMultipleChoice",  # 多项选择的MPNet模型
            "MPNetForQuestionAnswering",  # 问答的MPNet模型
            "MPNetForSequenceClassification",  # 序列分类的MPNet模型
            "MPNetForTokenClassification",  # 标记分类的MPNet模型
            "MPNetLayer",  # MPNet层
            "MPNetModel",  # MPNet模型
            "MPNetPreTrainedModel",  # MPNet预训练模型
        ]
    )
    # 将以下模型名称和相关属性扩展到_import_structure字典中的"models.mpt"
    _import_structure["models.mpt"].extend(
        [
            "MPT_PRETRAINED_MODEL_ARCHIVE_LIST",  # MPT预训练模型存档列表
            "MptForCausalLM",  # 因果语言建模的Mpt模型
            "MptForQuestionAnswering",  # 问答的Mpt模型
            "MptForSequenceClassification",  # 序列分类的Mpt模型
            "MptForTokenClassification",  # 标记分类的Mpt模型
            "MptModel",  # Mpt模型
            "MptPreTrainedModel",  # Mpt预训练模型
        ]
    )
    # 将以下模型名称和相关属性扩展到_import_structure字典中的"models.mra"
    _import_structure["models.mra"].extend(
        [
            "MRA_PRETRAINED_MODEL_ARCHIVE_LIST",  # MRA预训练模型存档列表
            "MraForMaskedLM",  # 掩码语言建模的Mra模型
            "MraForMultipleChoice",  # 多项选择的Mra模型
            "MraForQuestionAnswering",  # 问答的Mra模型
            "MraForSequenceClassification",  # 序列分类的Mra模型
            "MraForTokenClassification",  # 标记分类的Mra模型
            "MraModel",  # Mra模型
            "MraPreTrainedModel",  # Mra预训练模型
        ]
    )
    # 将以下模型名称和相关属性扩展到_import_structure字典中的"models.mt5"
    _import_structure["models.mt5"].extend(
        [
            "MT5EncoderModel",  # MT5编码器模型
            "MT5ForConditionalGeneration",  # 条件生成的MT5模型
            "MT5ForQuestionAnswering",  # 问答的MT5模型
            "MT5ForSequenceClassification",  # 序列分类的MT5模型
            "MT5ForTokenClassification",  # 标记分类的MT5模型
            "MT5Model",  # MT5模型
            "MT5PreTrainedModel",  # MT5预训练模型
        ]
    )
    # 将以下模型名称和相关属性扩展到_import_structure字典中的"models.musicgen"
    _import_structure["models.musicgen"].extend(
        [
            "MUSICGEN_PRETRAINED_MODEL_ARCHIVE_LIST",  # MUSICGEN预训练模型存档列表
            "MusicgenForCausalLM",  # 因果语言建模的Musicgen模型
            "MusicgenForConditionalGeneration",  # 条件生成的Musicgen模型
            "MusicgenModel",  # Musicgen模型
            "MusicgenPreTrainedModel",  # Musicgen预训练模型
            "MusicgenProcessor",  # Musicgen处理器
        ]
    )
    # 将以下模型名称和相关属性扩展到_import_structure字典中的"models.musicgen_melody"
    _import_structure["models.musicgen_melody"].extend(
        [
            "MUSICGEN_MELODY_PRETRAINED_MODEL_ARCHIVE_LIST",  # MUSICGEN_MELODY预训练模型存档列表
            "MusicgenMelodyForCausalLM",  # 因果语言建模的MusicgenMelody模型
            "MusicgenMelodyForConditionalGeneration",  # 条件生成的MusicgenMelody模型
            "MusicgenMelodyModel",  # MusicgenMelody模型
            "MusicgenMelodyPreTrainedModel",  # MusicgenMelody预训练模型
        ]
    )
    # 将以下模型名称和相关属性扩展到_import_structure字典中的"models.mvp"
    _import_structure["models.mvp"].extend(
        [
            "MVP_PRETRAINED_MODEL_ARCHIVE_LIST",  # MVP预训练模型存档列表
            "MvpForCausalLM",  # 因果语言建模的Mvp模型
            "MvpForConditionalGeneration",  # 条件生成的Mvp模型
            "MvpForQuestionAnswering",  # 问答的Mvp模型
            "MvpForSequenceClassification",  # 序列分类的Mvp模型
            "MvpModel",  # Mvp模型
            "MvpPreTrainedModel",  # Mvp预训练模型
        ]
    )
    # 将以下模型名称和相关属性扩展到_import_structure字典中的"models.nat"
    _import_structure["models.nat"].extend(
        [
            "NAT_PRETRAINED_MODEL_ARCHIVE_LIST",  # NAT预训练模型存档列表
            "NatBackbone",  # NatBackbone
            "NatForImageClassification",  # 图像分类的Nat模型
            "NatModel",  # Nat模型
            "NatPreTrainedModel",  # Nat预训练模型
        ]
    )
    # 将 "models.nezha" 模块下的特定类名和常量列表扩展到 _import_structure 字典中
    _import_structure["models.nezha"].extend(
        [
            "NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST",  # NEZHA 预训练模型存档列表常量
            "NezhaForMaskedLM",  # NEZHA Masked LM 模型类
            "NezhaForMultipleChoice",  # NEZHA 多选题模型类
            "NezhaForNextSentencePrediction",  # NEZHA 下一句预测模型类
            "NezhaForPreTraining",  # NEZHA 预训练模型类
            "NezhaForQuestionAnswering",  # NEZHA 问答模型类
            "NezhaForSequenceClassification",  # NEZHA 序列分类模型类
            "NezhaForTokenClassification",  # NEZHA 标记分类模型类
            "NezhaModel",  # NEZHA 模型基类
            "NezhaPreTrainedModel",  # NEZHA 预训练模型基类
        ]
    )
    
    # 将 "models.nllb_moe" 模块下的特定类名和常量列表扩展到 _import_structure 字典中
    _import_structure["models.nllb_moe"].extend(
        [
            "NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST",  # NLLB_MOE 预训练模型存档列表常量
            "NllbMoeForConditionalGeneration",  # NLLB_MOE 生成条件模型类
            "NllbMoeModel",  # NLLB_MOE 模型类
            "NllbMoePreTrainedModel",  # NLLB_MOE 预训练模型基类
            "NllbMoeSparseMLP",  # NLLB_MOE 稀疏MLP模型类
            "NllbMoeTop2Router",  # NLLB_MOE Top2路由模型类
        ]
    )
    
    # 将 "models.nystromformer" 模块下的特定类名和常量列表扩展到 _import_structure 字典中
    _import_structure["models.nystromformer"].extend(
        [
            "NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",  # NYSTROMFORMER 预训练模型存档列表常量
            "NystromformerForMaskedLM",  # NYSTROMFORMER Masked LM 模型类
            "NystromformerForMultipleChoice",  # NYSTROMFORMER 多选题模型类
            "NystromformerForQuestionAnswering",  # NYSTROMFORMER 问答模型类
            "NystromformerForSequenceClassification",  # NYSTROMFORMER 序列分类模型类
            "NystromformerForTokenClassification",  # NYSTROMFORMER 标记分类模型类
            "NystromformerLayer",  # NYSTROMFORMER 模型层类
            "NystromformerModel",  # NYSTROMFORMER 模型类
            "NystromformerPreTrainedModel",  # NYSTROMFORMER 预训练模型基类
        ]
    )
    
    # 将 "models.oneformer" 模块下的特定类名和常量列表扩展到 _import_structure 字典中
    _import_structure["models.oneformer"].extend(
        [
            "ONEFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",  # ONEFORMER 预训练模型存档列表常量
            "OneFormerForUniversalSegmentation",  # ONEFORMER 通用分割模型类
            "OneFormerModel",  # ONEFORMER 模型类
            "OneFormerPreTrainedModel",  # ONEFORMER 预训练模型基类
        ]
    )
    
    # 将 "models.openai" 模块下的特定类名和常量列表扩展到 _import_structure 字典中
    _import_structure["models.openai"].extend(
        [
            "OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST",  # OPENAI_GPT 预训练模型存档列表常量
            "OpenAIGPTDoubleHeadsModel",  # OPENAI_GPT 双头模型类
            "OpenAIGPTForSequenceClassification",  # OPENAI_GPT 序列分类模型类
            "OpenAIGPTLMHeadModel",  # OPENAI_GPT LM头模型类
            "OpenAIGPTModel",  # OPENAI_GPT 模型类
            "OpenAIGPTPreTrainedModel",  # OPENAI_GPT 预训练模型基类
            "load_tf_weights_in_openai_gpt",  # 在 OPENAI_GPT 中加载 TensorFlow 权重函数
        ]
    )
    
    # 将 "models.opt" 模块下的特定类名和常量列表扩展到 _import_structure 字典中
    _import_structure["models.opt"].extend(
        [
            "OPT_PRETRAINED_MODEL_ARCHIVE_LIST",  # OPT 预训练模型存档列表常量
            "OPTForCausalLM",  # OPT 因果LM模型类
            "OPTForQuestionAnswering",  # OPT 问答模型类
            "OPTForSequenceClassification",  # OPT 序列分类模型类
            "OPTModel",  # OPT 模型类
            "OPTPreTrainedModel",  # OPT 预训练模型基类
        ]
    )
    
    # 将 "models.owlv2" 模块下的特定类名和常量列表扩展到 _import_structure 字典中
    _import_structure["models.owlv2"].extend(
        [
            "OWLV2_PRETRAINED_MODEL_ARCHIVE_LIST",  # OWLV2 预训练模型存档列表常量
            "Owlv2ForObjectDetection",  # OWLV2 目标检测模型类
            "Owlv2Model",  # OWLV2 模型类
            "Owlv2PreTrainedModel",  # OWLV2 预训练模型基类
            "Owlv2TextModel",  # OWLV2 文本模型类
            "Owlv2VisionModel",  # OWLV2 视觉模型类
        ]
    )
    
    # 将 "models.owlvit" 模块下的特定类名和常量列表扩展到 _import_structure 字典中
    _import_structure["models.owlvit"].extend(
        [
            "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST",  # OWLVIT 预训练模型存档列表常量
            "OwlViTForObjectDetection",  # OWLVIT 目标检测模型类
            "OwlViTModel",  # OWLVIT 模型类
            "OwlViTPreTrainedModel",  # OWLVIT 预训练模型基类
            "OwlViTTextModel",  # OWLVIT 文本模型类
            "OwlViTVisionModel",  # OWLVIT 视觉模型类
        ]
    )
    # 将以下模块添加到 `_import_structure` 字典中的 "models.patchtsmixer" 键对应的列表中
    _import_structure["models.patchtsmixer"].extend(
        [
            "PATCHTSMIXER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "PatchTSMixerForPrediction",
            "PatchTSMixerForPretraining",
            "PatchTSMixerForRegression",
            "PatchTSMixerForTimeSeriesClassification",
            "PatchTSMixerModel",
            "PatchTSMixerPreTrainedModel",
        ]
    )
    # 将以下模块添加到 `_import_structure` 字典中的 "models.patchtst" 键对应的列表中
    _import_structure["models.patchtst"].extend(
        [
            "PATCHTST_PRETRAINED_MODEL_ARCHIVE_LIST",
            "PatchTSTForClassification",
            "PatchTSTForPrediction",
            "PatchTSTForPretraining",
            "PatchTSTForRegression",
            "PatchTSTModel",
            "PatchTSTPreTrainedModel",
        ]
    )
    # 将以下模块添加到 `_import_structure` 字典中的 "models.pegasus" 键对应的列表中
    _import_structure["models.pegasus"].extend(
        [
            "PegasusForCausalLM",
            "PegasusForConditionalGeneration",
            "PegasusModel",
            "PegasusPreTrainedModel",
        ]
    )
    # 将以下模块添加到 `_import_structure` 字典中的 "models.pegasus_x" 键对应的列表中
    _import_structure["models.pegasus_x"].extend(
        [
            "PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST",
            "PegasusXForConditionalGeneration",
            "PegasusXModel",
            "PegasusXPreTrainedModel",
        ]
    )
    # 将以下模块添加到 `_import_structure` 字典中的 "models.perceiver" 键对应的列表中
    _import_structure["models.perceiver"].extend(
        [
            "PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "PerceiverForImageClassificationConvProcessing",
            "PerceiverForImageClassificationFourier",
            "PerceiverForImageClassificationLearned",
            "PerceiverForMaskedLM",
            "PerceiverForMultimodalAutoencoding",
            "PerceiverForOpticalFlow",
            "PerceiverForSequenceClassification",
            "PerceiverLayer",
            "PerceiverModel",
            "PerceiverPreTrainedModel",
        ]
    )
    # 将以下模块添加到 `_import_structure` 字典中的 "models.persimmon" 键对应的列表中
    _import_structure["models.persimmon"].extend(
        [
            "PersimmonForCausalLM",
            "PersimmonForSequenceClassification",
            "PersimmonModel",
            "PersimmonPreTrainedModel",
        ]
    )
    # 将以下模块添加到 `_import_structure` 字典中的 "models.phi" 键对应的列表中
    _import_structure["models.phi"].extend(
        [
            "PHI_PRETRAINED_MODEL_ARCHIVE_LIST",
            "PhiForCausalLM",
            "PhiForSequenceClassification",
            "PhiForTokenClassification",
            "PhiModel",
            "PhiPreTrainedModel",
        ]
    )
    # 将以下模块添加到 `_import_structure` 字典中的 "models.pix2struct" 键对应的列表中
    _import_structure["models.pix2struct"].extend(
        [
            "PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "Pix2StructForConditionalGeneration",
            "Pix2StructPreTrainedModel",
            "Pix2StructTextModel",
            "Pix2StructVisionModel",
        ]
    )
    # 将以下模块添加到 `_import_structure` 字典中的 "models.plbart" 键对应的列表中
    _import_structure["models.plbart"].extend(
        [
            "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST",
            "PLBartForCausalLM",
            "PLBartForConditionalGeneration",
            "PLBartForSequenceClassification",
            "PLBartModel",
            "PLBartPreTrainedModel",
        ]
    )
    # 将 "models.poolformer" 模块的预训练模型列表、图像分类的 PoolFormer 类、PoolFormer 模型、PoolFormer 的预训练模型添加到导入结构中
    _import_structure["models.poolformer"].extend(
        [
            "POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "PoolFormerForImageClassification",
            "PoolFormerModel",
            "PoolFormerPreTrainedModel",
        ]
    )
    # 将 "models.pop2piano" 模块的预训练模型列表、条件生成的 Pop2Piano 类、Pop2Piano 模型、Pop2Piano 的预训练模型添加到导入结构中
    _import_structure["models.pop2piano"].extend(
        [
            "POP2PIANO_PRETRAINED_MODEL_ARCHIVE_LIST",
            "Pop2PianoForConditionalGeneration",
            "Pop2PianoPreTrainedModel",
        ]
    )
    # 将 "models.prophetnet" 模块的预训练模型列表、ProphetNet 解码器、ProphetNet 编码器等添加到导入结构中
    _import_structure["models.prophetnet"].extend(
        [
            "PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ProphetNetDecoder",
            "ProphetNetEncoder",
            "ProphetNetForCausalLM",
            "ProphetNetForConditionalGeneration",
            "ProphetNetModel",
            "ProphetNetPreTrainedModel",
        ]
    )
    # 将 "models.pvt" 模块的预训练模型列表、图像分类的 Pvt 类、Pvt 模型、Pvt 的预训练模型添加到导入结构中
    _import_structure["models.pvt"].extend(
        [
            "PVT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "PvtForImageClassification",
            "PvtModel",
            "PvtPreTrainedModel",
        ]
    )
    # 将 "models.pvt_v2" 模块的预训练模型列表、PvtV2 的骨干网络、图像分类的 PvtV2 类、PvtV2 模型、PvtV2 的预训练模型添加到导入结构中
    _import_structure["models.pvt_v2"].extend(
        [
            "PVT_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
            "PvtV2Backbone",
            "PvtV2ForImageClassification",
            "PvtV2Model",
            "PvtV2PreTrainedModel",
        ]
    )
    # 将 "models.qdqbert" 模块的预训练模型列表、QDQBert 的各种任务专用类、QDQBert 层、QDQBert 语言模型头部等添加到导入结构中
    _import_structure["models.qdqbert"].extend(
        [
            "QDQBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "QDQBertForMaskedLM",
            "QDQBertForMultipleChoice",
            "QDQBertForNextSentencePrediction",
            "QDQBertForQuestionAnswering",
            "QDQBertForSequenceClassification",
            "QDQBertForTokenClassification",
            "QDQBertLayer",
            "QDQBertLMHeadModel",
            "QDQBertModel",
            "QDQBertPreTrainedModel",
            "load_tf_weights_in_qdqbert",
        ]
    )
    # 将 "models.qwen2" 模块的条件生成 Qwen2 类、Qwen2 模型、Qwen2 的预训练模型添加到导入结构中
    _import_structure["models.qwen2"].extend(
        [
            "Qwen2ForCausalLM",
            "Qwen2ForSequenceClassification",
            "Qwen2Model",
            "Qwen2PreTrainedModel",
        ]
    )
    # 将 "models.rag" 模块的 RAG 模型、RAG 的预训练模型添加到导入结构中
    _import_structure["models.rag"].extend(
        [
            "RagModel",
            "RagPreTrainedModel",
            "RagSequenceForGeneration",
            "RagTokenForGeneration",
        ]
    )
    # 将 "models.realm" 模块的预训练模型列表、RealmEmbedder、RealmForOpenQA 等添加到导入结构中
    _import_structure["models.realm"].extend(
        [
            "REALM_PRETRAINED_MODEL_ARCHIVE_LIST",
            "RealmEmbedder",
            "RealmForOpenQA",
            "RealmKnowledgeAugEncoder",
            "RealmPreTrainedModel",
            "RealmReader",
            "RealmRetriever",
            "RealmScorer",
            "load_tf_weights_in_realm",
        ]
    )
    # 将以下模型和相关内容导入到_import_structure中的"models.reformer"模块中
    _import_structure["models.reformer"].extend(
        [
            "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",    # 引入预训练模型存档列表
            "ReformerAttention",                        # 引入ReformerAttention类
            "ReformerForMaskedLM",                      # 引入ReformerForMaskedLM类
            "ReformerForQuestionAnswering",              # 引入ReformerForQuestionAnswering类
            "ReformerForSequenceClassification",        # 引入ReformerForSequenceClassification类
            "ReformerLayer",                            # 引入ReformerLayer类
            "ReformerModel",                            # 引入ReformerModel类
            "ReformerModelWithLMHead",                  # 引入ReformerModelWithLMHead类
            "ReformerPreTrainedModel",                  # 引入ReformerPreTrainedModel类
        ]
    )
    
    # 将以下模型和相关内容导入到_import_structure中的"models.regnet"模块中
    _import_structure["models.regnet"].extend(
        [
            "REGNET_PRETRAINED_MODEL_ARCHIVE_LIST",      # 引入预训练模型存档列表
            "RegNetForImageClassification",             # 引入RegNetForImageClassification类
            "RegNetModel",                              # 引入RegNetModel类
            "RegNetPreTrainedModel",                    # 引入RegNetPreTrainedModel类
        ]
    )
    
    # 将以下模型和相关内容导入到_import_structure中的"models.rembert"模块中
    _import_structure["models.rembert"].extend(
        [
            "REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",     # 引入预训练模型存档列表
            "RemBertForCausalLM",                       # 引入RemBertForCausalLM类
            "RemBertForMaskedLM",                       # 引入RemBertForMaskedLM类
            "RemBertForMultipleChoice",                 # 引入RemBertForMultipleChoice类
            "RemBertForQuestionAnswering",              # 引入RemBertForQuestionAnswering类
            "RemBertForSequenceClassification",         # 引入RemBertForSequenceClassification类
            "RemBertForTokenClassification",            # 引入RemBertForTokenClassification类
            "RemBertLayer",                             # 引入RemBertLayer类
            "RemBertModel",                             # 引入RemBertModel类
            "RemBertPreTrainedModel",                   # 引入RemBertPreTrainedModel类
            "load_tf_weights_in_rembert",               # 引入load_tf_weights_in_rembert函数
        ]
    )
    
    # 将以下模型和相关内容导入到_import_structure中的"models.resnet"模块中
    _import_structure["models.resnet"].extend(
        [
            "RESNET_PRETRAINED_MODEL_ARCHIVE_LIST",      # 引入预训练模型存档列表
            "ResNetBackbone",                           # 引入ResNetBackbone类
            "ResNetForImageClassification",             # 引入ResNetForImageClassification类
            "ResNetModel",                              # 引入ResNetModel类
            "ResNetPreTrainedModel",                    # 引入ResNetPreTrainedModel类
        ]
    )
    
    # 将以下模型和相关内容导入到_import_structure中的"models.roberta"模块中
    _import_structure["models.roberta"].extend(
        [
            "ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",     # 引入预训练模型存档列表
            "RobertaForCausalLM",                       # 引入RobertaForCausalLM类
            "RobertaForMaskedLM",                       # 引入RobertaForMaskedLM类
            "RobertaForMultipleChoice",                 # 引入RobertaForMultipleChoice类
            "RobertaForQuestionAnswering",              # 引入RobertaForQuestionAnswering类
            "RobertaForSequenceClassification",         # 引入RobertaForSequenceClassification类
            "RobertaForTokenClassification",            # 引入RobertaForTokenClassification类
            "RobertaModel",                             # 引入RobertaModel类
            "RobertaPreTrainedModel",                   # 引入RobertaPreTrainedModel类
        ]
    )
    
    # 将以下模型和相关内容导入到_import_structure中的"models.roberta_prelayernorm"模块中
    _import_structure["models.roberta_prelayernorm"].extend(
        [
            "ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST",     # 引入预训练模型存档列表
            "RobertaPreLayerNormForCausalLM",                         # 引入RobertaPreLayerNormForCausalLM类
            "RobertaPreLayerNormForMaskedLM",                         # 引入RobertaPreLayerNormForMaskedLM类
            "RobertaPreLayerNormForMultipleChoice",                   # 引入RobertaPreLayerNormForMultipleChoice类
            "RobertaPreLayerNormForQuestionAnswering",                # 引入RobertaPreLayerNormForQuestionAnswering类
            "RobertaPreLayerNormForSequenceClassification",           # 引入RobertaPreLayerNormForSequenceClassification类
            "RobertaPreLayerNormForTokenClassification",              # 引入RobertaPreLayerNormForTokenClassification类
            "RobertaPreLayerNormModel",                               # 引入RobertaPreLayerNormModel类
            "RobertaPreLayerNormPreTrainedModel",                     # 引入RobertaPreLayerNormPreTrainedModel类
        ]
    )
    
    # 将以下模型和相关内容导入到_import_structure中的"models.roc_bert"模块中
    _import_structure["models.roc_bert"].extend(
        [
            "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",      # 引入预训练模型存档列表
            "RoCBertForCausalLM",                         # 引入RoCBertForCausalLM类
            "RoCBertForMaskedLM",                         # 引入RoCBertForMaskedLM类
            "RoCBertForMultipleChoice",                   # 引入RoCBertForMultipleChoice类
            "RoCBertForPreTraining",                      # 引入RoCBertForPreTraining类
            "RoCBertForQuestionAnswering",                # 引入RoCBertForQuestionAnswering类
            "RoCBertForSequenceClassification",           # 引入RoCBertForSequenceClassification类
            "RoCBertForTokenClassification",              # 引入RoCBertForTokenClassification类
            "RoCBertLayer",                               # 引入RoCBertLayer类
            "RoCBertModel",                               # 引入RoCBertModel类
            "RoCBertPreTrainedModel",                     # 引入RoCBertPreTrainedModel类
            "load_tf_weights_in_roc_bert",                # 引入load_tf_weights_in_roc_bert函数
        ]
    )
    # 将 "models.roformer" 模块中的一组成员添加到 _import_structure 字典的列表中
    _import_structure["models.roformer"].extend(
        [
            "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",  # RoFormer 预训练模型的存档列表
            "RoFormerForCausalLM",  # 用于因果语言建模的 RoFormer 模型
            "RoFormerForMaskedLM",  # 用于遮蔽语言建模的 RoFormer 模型
            "RoFormerForMultipleChoice",  # 用于多选题任务的 RoFormer 模型
            "RoFormerForQuestionAnswering",  # 用于问答任务的 RoFormer 模型
            "RoFormerForSequenceClassification",  # 用于序列分类任务的 RoFormer 模型
            "RoFormerForTokenClassification",  # 用于标记分类任务的 RoFormer 模型
            "RoFormerLayer",  # RoFormer 模型的层定义
            "RoFormerModel",  # RoFormer 模型的主体定义
            "RoFormerPreTrainedModel",  # RoFormer 模型的预训练模型基类
            "load_tf_weights_in_roformer",  # 加载 TensorFlow 权重到 RoFormer 模型中的函数
        ]
    )
    # 将 "models.rwkv" 模块中的一组成员添加到 _import_structure 字典的列表中
    _import_structure["models.rwkv"].extend(
        [
            "RWKV_PRETRAINED_MODEL_ARCHIVE_LIST",  # Rwkv 预训练模型的存档列表
            "RwkvForCausalLM",  # 用于因果语言建模的 Rwkv 模型
            "RwkvModel",  # Rwkv 模型的主体定义
            "RwkvPreTrainedModel",  # Rwkv 模型的预训练模型基类
        ]
    )
    # 将 "models.sam" 模块中的一组成员添加到 _import_structure 字典的列表中
    _import_structure["models.sam"].extend(
        [
            "SAM_PRETRAINED_MODEL_ARCHIVE_LIST",  # SAM 预训练模型的存档列表
            "SamModel",  # SAM 模型的主体定义
            "SamPreTrainedModel",  # SAM 模型的预训练模型基类
        ]
    )
    # 将 "models.seamless_m4t" 模块中的一组成员添加到 _import_structure 字典的列表中
    _import_structure["models.seamless_m4t"].extend(
        [
            "SEAMLESS_M4T_PRETRAINED_MODEL_ARCHIVE_LIST",  # Seamless M4T 预训练模型的存档列表
            "SeamlessM4TCodeHifiGan",  # 用于代码 Hifi Gan 的 Seamless M4T 模型
            "SeamlessM4TForSpeechToSpeech",  # 用于语音转语音任务的 Seamless M4T 模型
            "SeamlessM4TForSpeechToText",  # 用于语音转文本任务的 Seamless M4T 模型
            "SeamlessM4TForTextToSpeech",  # 用于文本转语音任务的 Seamless M4T 模型
            "SeamlessM4TForTextToText",  # 用于文本转文本任务的 Seamless M4T 模型
            "SeamlessM4THifiGan",  # 用于 Hifi Gan 的 Seamless M4T 模型
            "SeamlessM4TModel",  # Seamless M4T 模型的主体定义
            "SeamlessM4TPreTrainedModel",  # Seamless M4T 模型的预训练模型基类
            "SeamlessM4TTextToUnitForConditionalGeneration",  # 用于条件生成的 Seamless M4T 模型
            "SeamlessM4TTextToUnitModel",  # 用于文本生成的 Seamless M4T 模型
        ]
    )
    # 将 "models.seamless_m4t_v2" 模块中的一组成员添加到 _import_structure 字典的列表中
    _import_structure["models.seamless_m4t_v2"].extend(
        [
            "SEAMLESS_M4T_V2_PRETRAINED_MODEL_ARCHIVE_LIST",  # Seamless M4T V2 预训练模型的存档列表
            "SeamlessM4Tv2ForSpeechToSpeech",  # 用于语音转语音任务的 Seamless M4T V2 模型
            "SeamlessM4Tv2ForSpeechToText",  # 用于语音转文本任务的 Seamless M4T V2 模型
            "SeamlessM4Tv2ForTextToSpeech",  # 用于文本转语音任务的 Seamless M4T V2 模型
            "SeamlessM4Tv2ForTextToText",  # 用于文本转文本任务的 Seamless M4T V2 模型
            "SeamlessM4Tv2Model",  # Seamless M4T V2 模型的主体定义
            "SeamlessM4Tv2PreTrainedModel",  # Seamless M4T V2 模型的预训练模型基类
        ]
    )
    # 将 "models.segformer" 模块中的一组成员添加到 _import_structure 字典的列表中
    _import_structure["models.segformer"].extend(
        [
            "SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",  # Segformer 预训练模型的存档列表
            "SegformerDecodeHead",  # Segformer 解码头部定义
            "SegformerForImageClassification",  # 用于图像分类任务的 Segformer 模型
            "SegformerForSemanticSegmentation",  # 用于语义分割任务的 Segformer 模型
            "SegformerLayer",  # Segformer 模型的层定义
            "SegformerModel",  # Segformer 模型的主体定义
            "SegformerPreTrainedModel",  # Segformer 模型的预训练模型基类
        ]
    )
    # 将 "models.seggpt" 模块中的一组成员添加到 _import_structure 字典的列表中
    _import_structure["models.seggpt"].extend(
        [
            "SEGGPT_PRETRAINED_MODEL_ARCHIVE_LIST",  # SegGpt 预训练模型的存档列表
            "SegGptForImageSegmentation",  # 用于图像分割任务的 SegGpt 模型
            "SegGptModel",  # SegGpt 模型的主体定义
            "SegGptPreTrainedModel",  # SegGpt 模型的预训练模型基类
        ]
    )
    # 将 "models.sew" 模块中的一组成员添加到 _import_structure 字典的列表中
    _import_structure["models.sew"].extend(
        [
            "SEW_PRETRAINED_MODEL_ARCHIVE_LIST",  # SEW 预训练模型的存档列表
            "SEWForCTC",  # 用于 CTC 模型的 SEW 模型
            "SEWForSequenceClassification",  # 用于序列分类任务的 SEW 模型
            "SEWModel",  # SEW 模型的主体定义
            "SEWPreTrainedModel",  # SEW 模型的预训练模型基类
        ]
    )
    # 将 "models.sew_d" 模块中的一组成员添加到 _import_structure 字典的列表中
    _import_structure["models.sew_d"].extend(
        [
            "SEW_D_PRETRAINED_MODEL_ARCHIVE_LIST",  # SEW_D 预训练模型的存档列表
            "SEWDForCTC",  # 用于 CTC 模型的 SEW_D 模型
            "SEWDForSequenceClassification",  # 用于序列分类任务的 SEW_D 模型
            "SEWDModel",  # SEW_D 模型的主体定义
            "SEWDPreTrainedModel",  # SEW_D 模型的预训练模型基类
        ]
    )
    # 扩展导入结构中 "models.siglip" 的内容列表,包括预训练模型列表、图像分类模型、基础模型、预训练模型和文本模型、视觉模型
    _import_structure["models.siglip"].extend(
        [
            "SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
            "SiglipForImageClassification",
            "SiglipModel",
            "SiglipPreTrainedModel",
            "SiglipTextModel",
            "SiglipVisionModel",
        ]
    )
    # 扩展导入结构中 "models.speech_encoder_decoder" 的内容列表,包括语音编码解码模型
    _import_structure["models.speech_encoder_decoder"].extend(["SpeechEncoderDecoderModel"])
    # 扩展导入结构中 "models.speech_to_text" 的内容列表,包括语音转文本预训练模型列表、语音转文本生成模型、语音转文本基础模型、语音转文本预训练模型
    _import_structure["models.speech_to_text"].extend(
        [
            "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "Speech2TextForConditionalGeneration",
            "Speech2TextModel",
            "Speech2TextPreTrainedModel",
        ]
    )
    # 扩展导入结构中 "models.speech_to_text_2" 的内容列表,包括第二个语音转文本条件LM模型和第二个语音转文本预训练模型
    _import_structure["models.speech_to_text_2"].extend(["Speech2Text2ForCausalLM", "Speech2Text2PreTrainedModel"])
    # 扩展导入结构中 "models.speecht5" 的内容列表,包括T5风格语音到语音预训练模型列表、T5风格语音到文本模型、T5风格文本到语音模型、T5风格HifiGan模型、T5风格基础模型、T5风格预训练模型
    _import_structure["models.speecht5"].extend(
        [
            "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST",
            "SpeechT5ForSpeechToSpeech",
            "SpeechT5ForSpeechToText",
            "SpeechT5ForTextToSpeech",
            "SpeechT5HifiGan",
            "SpeechT5Model",
            "SpeechT5PreTrainedModel",
        ]
    )
    # 扩展导入结构中 "models.splinter" 的内容列表,包括SPLINTER预训练模型列表、SPLINTER预训练模型、SPLINTER问答模型、SPLINTER层、SPLINTER基础模型、SPLINTER预训练模型
    _import_structure["models.splinter"].extend(
        [
            "SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "SplinterForPreTraining",
            "SplinterForQuestionAnswering",
            "SplinterLayer",
            "SplinterModel",
            "SplinterPreTrainedModel",
        ]
    )
    # 扩展导入结构中 "models.squeezebert" 的内容列表,包括SQUEEZEBERT预训练模型列表、SQUEEZEBERT遮蔽LM模型、SQUEEZEBERT多项选择模型、SQUEEZEBERT问答模型、SQUEEZEBERT序列分类模型、SQUEEZEBERT标记分类模型、SQUEEZEBERT基础模型、SQUEEZEBERT模块、SQUEEZEBERT预训练模型
    _import_structure["models.squeezebert"].extend(
        [
            "SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "SqueezeBertForMaskedLM",
            "SqueezeBertForMultipleChoice",
            "SqueezeBertForQuestionAnswering",
            "SqueezeBertForSequenceClassification",
            "SqueezeBertForTokenClassification",
            "SqueezeBertModel",
            "SqueezeBertModule",
            "SqueezeBertPreTrainedModel",
        ]
    )
    # 扩展导入结构中 "models.stablelm" 的内容列表,包括稳定LM条件LM模型、稳定LM序列分类模型、稳定LM基础模型、稳定LM预训练模型
    _import_structure["models.stablelm"].extend(
        [
            "StableLmForCausalLM",
            "StableLmForSequenceClassification",
            "StableLmModel",
            "StableLmPreTrainedModel",
        ]
    )
    # 扩展导入结构中 "models.starcoder2" 的内容列表,包括Starcoder2条件LM模型、Starcoder2序列分类模型、Starcoder2基础模型、Starcoder2预训练模型
    _import_structure["models.starcoder2"].extend(
        [
            "Starcoder2ForCausalLM",
            "Starcoder2ForSequenceClassification",
            "Starcoder2Model",
            "Starcoder2PreTrainedModel",
        ]
    )
    # 扩展导入结构中 "models.superpoint" 的内容列表,包括SUPERPOINT预训练模型列表、SUPERPOINT关键点检测模型、SUPERPOINT基础模型
    _import_structure["models.superpoint"].extend(
        [
            "SUPERPOINT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "SuperPointForKeypointDetection",
            "SuperPointPreTrainedModel",
        ]
    )
    # 扩展导入结构中 "models.swiftformer" 的内容列表,包括SWIFTFORMER预训练模型列表、SWIFTFORMER图像分类模型、SWIFTFORMER基础模型、SWIFTFORMER预训练模型
    _import_structure["models.swiftformer"].extend(
        [
            "SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "SwiftFormerForImageClassification",
            "SwiftFormerModel",
            "SwiftFormerPreTrainedModel",
        ]
    )
    # 将指定模块的一组模型名称添加到_import_structure字典中
    _import_structure["models.swin"].extend(
        [
            "SWIN_PRETRAINED_MODEL_ARCHIVE_LIST",  # 预训练模型列表
            "SwinBackbone",  # Swin模型的骨干网络
            "SwinForImageClassification",  # 用于图像分类的Swin模型
            "SwinForMaskedImageModeling",  # 用于带遮罩图像建模的Swin模型
            "SwinModel",  # Swin模型
            "SwinPreTrainedModel",  # Swin预训练模型
        ]
    )
    # 将另一组模型名称添加到_import_structure字典中,此处处理swin2sr模块
    _import_structure["models.swin2sr"].extend(
        [
            "SWIN2SR_PRETRAINED_MODEL_ARCHIVE_LIST",  # SWIN2SR的预训练模型列表
            "Swin2SRForImageSuperResolution",  # 用于图像超分辨率的Swin2SR模型
            "Swin2SRModel",  # Swin2SR模型
            "Swin2SRPreTrainedModel",  # Swin2SR预训练模型
        ]
    )
    # 将另一组模型名称添加到_import_structure字典中,此处处理swinv2模块
    _import_structure["models.swinv2"].extend(
        [
            "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST",  # SWINV2的预训练模型列表
            "Swinv2Backbone",  # Swinv2模型的骨干网络
            "Swinv2ForImageClassification",  # 用于图像分类的Swinv2模型
            "Swinv2ForMaskedImageModeling",  # 用于带遮罩图像建模的Swinv2模型
            "Swinv2Model",  # Swinv2模型
            "Swinv2PreTrainedModel",  # Swinv2预训练模型
        ]
    )
    # 将另一组模型名称添加到_import_structure字典中,此处处理switch_transformers模块
    _import_structure["models.switch_transformers"].extend(
        [
            "SWITCH_TRANSFORMERS_PRETRAINED_MODEL_ARCHIVE_LIST",  # SWITCH_TRANSFORMERS的预训练模型列表
            "SwitchTransformersEncoderModel",  # SwitchTransformers编码器模型
            "SwitchTransformersForConditionalGeneration",  # SwitchTransformers条件生成模型
            "SwitchTransformersModel",  # SwitchTransformers通用模型
            "SwitchTransformersPreTrainedModel",  # SwitchTransformers预训练模型
            "SwitchTransformersSparseMLP",  # SwitchTransformers稀疏MLP模型
            "SwitchTransformersTop1Router",  # SwitchTransformers顶级1路由器模型
        ]
    )
    # 将另一组模型名称添加到_import_structure字典中,此处处理t5模块
    _import_structure["models.t5"].extend(
        [
            "T5_PRETRAINED_MODEL_ARCHIVE_LIST",  # T5的预训练模型列表
            "T5EncoderModel",  # T5编码器模型
            "T5ForConditionalGeneration",  # T5条件生成模型
            "T5ForQuestionAnswering",  # T5问答模型
            "T5ForSequenceClassification",  # T5序列分类模型
            "T5ForTokenClassification",  # T5标记分类模型
            "T5Model",  # T5通用模型
            "T5PreTrainedModel",  # T5预训练模型
            "load_tf_weights_in_t5",  # 在T5中加载TensorFlow权重
        ]
    )
    # 将另一组模型名称添加到_import_structure字典中,此处处理table_transformer模块
    _import_structure["models.table_transformer"].extend(
        [
            "TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",  # TABLE_TRANSFORMER的预训练模型列表
            "TableTransformerForObjectDetection",  # 用于对象检测的TableTransformer模型
            "TableTransformerModel",  # TableTransformer通用模型
            "TableTransformerPreTrainedModel",  # TableTransformer预训练模型
        ]
    )
    # 将另一组模型名称添加到_import_structure字典中,此处处理tapas模块
    _import_structure["models.tapas"].extend(
        [
            "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST",  # TAPAS的预训练模型列表
            "TapasForMaskedLM",  # 用于掩码语言模型的Tapas模型
            "TapasForQuestionAnswering",  # Tapas问答模型
            "TapasForSequenceClassification",  # Tapas序列分类模型
            "TapasModel",  # Tapas通用模型
            "TapasPreTrainedModel",  # Tapas预训练模型
            "load_tf_weights_in_tapas",  # 在Tapas中加载TensorFlow权重
        ]
    )
    # 将另一组模型名称添加到_import_structure字典中,此处处理time_series_transformer模块
    _import_structure["models.time_series_transformer"].extend(
        [
            "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",  # TIME_SERIES_TRANSFORMER的预训练模型列表
            "TimeSeriesTransformerForPrediction",  # 用于预测的TimeSeriesTransformer模型
            "TimeSeriesTransformerModel",  # TimeSeriesTransformer通用模型
            "TimeSeriesTransformerPreTrainedModel",  # TimeSeriesTransformer预训练模型
        ]
    )
    # 将另一组模型名称添加到_import_structure字典中,此处处理timesformer模块
    _import_structure["models.timesformer"].extend(
        [
            "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",  # TIMESFORMER的预训练模型列表
            "TimesformerForVideoClassification",  # 用于视频分类的Timesformer模型
            "TimesformerModel",  # Timesformer通用模型
            "TimesformerPreTrainedModel",  # Timesformer预训练模型
        ]
    )
    # 将一个模型名称添加到_import_structure字典中,此处处理timm_backbone模块
    _import_structure["models.timm_backbone"].extend(["TimmBackbone"])  # TimmBackbone模型
    # 将 "models.trocr" 模块的列表扩展,包括预训练模型存档列表、特定模型类等
    _import_structure["models.trocr"].extend(
        [
            "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TrOCRForCausalLM",
            "TrOCRPreTrainedModel",
        ]
    )
    # 将 "models.tvlt" 模块的列表扩展,包括预训练模型存档列表、特定模型类等
    _import_structure["models.tvlt"].extend(
        [
            "TVLT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TvltForAudioVisualClassification",
            "TvltForPreTraining",
            "TvltModel",
            "TvltPreTrainedModel",
        ]
    )
    # 将 "models.tvp" 模块的列表扩展,包括预训练模型存档列表、特定模型类等
    _import_structure["models.tvp"].extend(
        [
            "TVP_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TvpForVideoGrounding",
            "TvpModel",
            "TvpPreTrainedModel",
        ]
    )
    # 将 "models.udop" 模块的列表扩展,包括预训练模型存档列表、特定模型类等
    _import_structure["models.udop"].extend(
        [
            "UDOP_PRETRAINED_MODEL_ARCHIVE_LIST",
            "UdopEncoderModel",
            "UdopForConditionalGeneration",
            "UdopModel",
            "UdopPreTrainedModel",
        ],
    )
    # 将 "models.umt5" 模块的列表扩展,包括特定模型类,如编码器、生成条件模型等
    _import_structure["models.umt5"].extend(
        [
            "UMT5EncoderModel",
            "UMT5ForConditionalGeneration",
            "UMT5ForQuestionAnswering",
            "UMT5ForSequenceClassification",
            "UMT5ForTokenClassification",
            "UMT5Model",
            "UMT5PreTrainedModel",
        ]
    )
    # 将 "models.unispeech" 模块的列表扩展,包括预训练模型存档列表、特定语音处理模型类等
    _import_structure["models.unispeech"].extend(
        [
            "UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST",
            "UniSpeechForCTC",
            "UniSpeechForPreTraining",
            "UniSpeechForSequenceClassification",
            "UniSpeechModel",
            "UniSpeechPreTrainedModel",
        ]
    )
    # 将 "models.unispeech_sat" 模块的列表扩展,包括预训练模型存档列表、特定语音处理模型类等
    _import_structure["models.unispeech_sat"].extend(
        [
            "UNISPEECH_SAT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "UniSpeechSatForAudioFrameClassification",
            "UniSpeechSatForCTC",
            "UniSpeechSatForPreTraining",
            "UniSpeechSatForSequenceClassification",
            "UniSpeechSatForXVector",
            "UniSpeechSatModel",
            "UniSpeechSatPreTrainedModel",
        ]
    )
    # 将 "models.univnet" 模块的列表扩展,包括预训练模型存档列表、特定模型类等
    _import_structure["models.univnet"].extend(
        [
            "UNIVNET_PRETRAINED_MODEL_ARCHIVE_LIST",
            "UnivNetModel",
        ]
    )
    # 将 "models.upernet" 模块的列表扩展,包括语义分割模型类、预训练模型类等
    _import_structure["models.upernet"].extend(
        [
            "UperNetForSemanticSegmentation",
            "UperNetPreTrainedModel",
        ]
    )
    # 将 "models.videomae" 模块的列表扩展,包括预训练模型存档列表、视频分类模型类等
    _import_structure["models.videomae"].extend(
        [
            "VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST",
            "VideoMAEForPreTraining",
            "VideoMAEForVideoClassification",
            "VideoMAEModel",
            "VideoMAEPreTrainedModel",
        ]
    )
    # 将指定模块内的预定义符号(变量和类)扩展到_import_structure字典中的models.vilt模块
    _import_structure["models.vilt"].extend(
        [
            "VILT_PRETRAINED_MODEL_ARCHIVE_LIST",  # 扩展预训练模型存档列表
            "ViltForImageAndTextRetrieval",  # 扩展图像和文本检索模型
            "ViltForImagesAndTextClassification",  # 扩展图像和文本分类模型
            "ViltForMaskedLM",  # 扩展掩码语言建模模型
            "ViltForQuestionAnswering",  # 扩展问答模型
            "ViltForTokenClassification",  # 扩展标记分类模型
            "ViltLayer",  # 扩展VILT层
            "ViltModel",  # 扩展VILT模型
            "ViltPreTrainedModel",  # 扩展VILT预训练模型
        ]
    )
    # 将指定模块内的预定义符号扩展到_import_structure字典中的models.vipllava模块
    _import_structure["models.vipllava"].extend(
        [
            "VIPLLAVA_PRETRAINED_MODEL_ARCHIVE_LIST",  # 扩展VIPLLAVA预训练模型存档列表
            "VipLlavaForConditionalGeneration",  # 扩展条件生成模型
            "VipLlavaPreTrainedModel",  # 扩展VIP LLAVA预训练模型
        ]
    )
    # 将指定模块内的预定义符号扩展到_import_structure字典中的models.vision_encoder_decoder模块
    _import_structure["models.vision_encoder_decoder"].extend(["VisionEncoderDecoderModel"])
    # 将指定模块内的预定义符号扩展到_import_structure字典中的models.vision_text_dual_encoder模块
    _import_structure["models.vision_text_dual_encoder"].extend(["VisionTextDualEncoderModel"])
    # 将指定模块内的预定义符号扩展到_import_structure字典中的models.visual_bert模块
    _import_structure["models.visual_bert"].extend(
        [
            "VISUAL_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",  # 扩展VISUAL BERT预训练模型存档列表
            "VisualBertForMultipleChoice",  # 扩展多选题模型
            "VisualBertForPreTraining",  # 扩展预训练模型
            "VisualBertForQuestionAnswering",  # 扩展视觉BERT问答模型
            "VisualBertForRegionToPhraseAlignment",  # 扩展区域到短语对齐模型
            "VisualBertForVisualReasoning",  # 扩展视觉推理模型
            "VisualBertLayer",  # 扩展Visual BERT层
            "VisualBertModel",  # 扩展Visual BERT模型
            "VisualBertPreTrainedModel",  # 扩展Visual BERT预训练模型
        ]
    )
    # 将指定模块内的预定义符号扩展到_import_structure字典中的models.vit模块
    _import_structure["models.vit"].extend(
        [
            "VIT_PRETRAINED_MODEL_ARCHIVE_LIST",  # 扩展VIT预训练模型存档列表
            "ViTForImageClassification",  # 扩展图像分类模型
            "ViTForMaskedImageModeling",  # 扩展掩码图像建模模型
            "ViTModel",  # 扩展ViT模型
            "ViTPreTrainedModel",  # 扩展ViT预训练模型
        ]
    )
    # 将指定模块内的预定义符号扩展到_import_structure字典中的models.vit_hybrid模块
    _import_structure["models.vit_hybrid"].extend(
        [
            "VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST",  # 扩展VIT HYBRID预训练模型存档列表
            "ViTHybridForImageClassification",  # 扩展图像分类模型
            "ViTHybridModel",  # 扩展ViT Hybrid模型
            "ViTHybridPreTrainedModel",  # 扩展ViT Hybrid预训练模型
        ]
    )
    # 将指定模块内的预定义符号扩展到_import_structure字典中的models.vit_mae模块
    _import_structure["models.vit_mae"].extend(
        [
            "VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST",  # 扩展VIT MAE预训练模型存档列表
            "ViTMAEForPreTraining",  # 扩展预训练模型
            "ViTMAELayer",  # 扩展ViT MAE层
            "ViTMAEModel",  # 扩展ViT MAE模型
            "ViTMAEPreTrainedModel",  # 扩展ViT MAE预训练模型
        ]
    )
    # 将指定模块内的预定义符号扩展到_import_structure字典中的models.vit_msn模块
    _import_structure["models.vit_msn"].extend(
        [
            "VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST",  # 扩展VIT MSN预训练模型存档列表
            "ViTMSNForImageClassification",  # 扩展图像分类模型
            "ViTMSNModel",  # 扩展ViT MSN模型
            "ViTMSNPreTrainedModel",  # 扩展ViT MSN预训练模型
        ]
    )
    # 将指定模块内的预定义符号扩展到_import_structure字典中的models.vitdet模块
    _import_structure["models.vitdet"].extend(
        [
            "VITDET_PRETRAINED_MODEL_ARCHIVE_LIST",  # 扩展VITDET预训练模型存档列表
            "VitDetBackbone",  # 扩展VitDet后端模型
            "VitDetModel",  # 扩展VitDet模型
            "VitDetPreTrainedModel",  # 扩展VitDet预训练模型
        ]
    )
    # 将指定模块内的预定义符号扩展到_import_structure字典中的models.vitmatte模块
    _import_structure["models.vitmatte"].extend(
        [
            "VITMATTE_PRETRAINED_MODEL_ARCHIVE_LIST",  # 扩展VITMATTE预训练模型存档列表
            "VitMatteForImageMatting",  # 扩展图像抠图模型
            "VitMattePreTrainedModel",  # 扩展VitMatte预训练模型
        ]
    )
    # 将指定模块内的预定义符号扩展到_import_structure字典中的models.vits模块
    _import_structure["models.vits"].extend(
        [
            "VITS_PRETRAINED_MODEL_ARCHIVE_LIST",  # 扩展VITS预训练模型存档列表
            "VitsModel",  # 扩展Vits模型
            "VitsPreTrainedModel",  # 扩展Vits预训练模型
        ]
    )
    # 将以下模型类和预训练模型列表添加到_import_structure字典中的各自模块中
    
    _import_structure["models.vivit"].extend(
        [
            "VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST",  # Vivit模块的预训练模型归档列表
            "VivitForVideoClassification",  # Vivit模型用于视频分类
            "VivitModel",  # Vivit模型
            "VivitPreTrainedModel",  # Vivit预训练模型
        ]
    )
    _import_structure["models.wav2vec2"].extend(
        [
            "WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",  # Wav2Vec2模块的预训练模型归档列表
            "Wav2Vec2ForAudioFrameClassification",  # Wav2Vec2模型用于音频帧分类
            "Wav2Vec2ForCTC",  # Wav2Vec2模型用于CTC任务
            "Wav2Vec2ForMaskedLM",  # Wav2Vec2模型用于遮蔽语言建模
            "Wav2Vec2ForPreTraining",  # Wav2Vec2模型用于预训练
            "Wav2Vec2ForSequenceClassification",  # Wav2Vec2模型用于序列分类
            "Wav2Vec2ForXVector",  # Wav2Vec2模型用于X向量生成
            "Wav2Vec2Model",  # Wav2Vec2模型
            "Wav2Vec2PreTrainedModel",  # Wav2Vec2预训练模型
        ]
    )
    _import_structure["models.wav2vec2_bert"].extend(
        [
            "WAV2VEC2_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",  # Wav2Vec2 BERT模块的预训练模型归档列表
            "Wav2Vec2BertForAudioFrameClassification",  # Wav2Vec2 BERT模型用于音频帧分类
            "Wav2Vec2BertForCTC",  # Wav2Vec2 BERT模型用于CTC任务
            "Wav2Vec2BertForSequenceClassification",  # Wav2Vec2 BERT模型用于序列分类
            "Wav2Vec2BertForXVector",  # Wav2Vec2 BERT模型用于X向量生成
            "Wav2Vec2BertModel",  # Wav2Vec2 BERT模型
            "Wav2Vec2BertPreTrainedModel",  # Wav2Vec2 BERT预训练模型
        ]
    )
    _import_structure["models.wav2vec2_conformer"].extend(
        [
            "WAV2VEC2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",  # Wav2Vec2 Conformer模块的预训练模型归档列表
            "Wav2Vec2ConformerForAudioFrameClassification",  # Wav2Vec2 Conformer模型用于音频帧分类
            "Wav2Vec2ConformerForCTC",  # Wav2Vec2 Conformer模型用于CTC任务
            "Wav2Vec2ConformerForPreTraining",  # Wav2Vec2 Conformer模型用于预训练
            "Wav2Vec2ConformerForSequenceClassification",  # Wav2Vec2 Conformer模型用于序列分类
            "Wav2Vec2ConformerForXVector",  # Wav2Vec2 Conformer模型用于X向量生成
            "Wav2Vec2ConformerModel",  # Wav2Vec2 Conformer模型
            "Wav2Vec2ConformerPreTrainedModel",  # Wav2Vec2 Conformer预训练模型
        ]
    )
    _import_structure["models.wavlm"].extend(
        [
            "WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST",  # WavLM模块的预训练模型归档列表
            "WavLMForAudioFrameClassification",  # WavLM模型用于音频帧分类
            "WavLMForCTC",  # WavLM模型用于CTC任务
            "WavLMForSequenceClassification",  # WavLM模型用于序列分类
            "WavLMForXVector",  # WavLM模型用于X向量生成
            "WavLMModel",  # WavLM模型
            "WavLMPreTrainedModel",  # WavLM预训练模型
        ]
    )
    _import_structure["models.whisper"].extend(
        [
            "WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST",  # Whisper模块的预训练模型归档列表
            "WhisperForAudioClassification",  # Whisper模型用于音频分类
            "WhisperForCausalLM",  # Whisper模型用于因果语言建模
            "WhisperForConditionalGeneration",  # Whisper模型用于条件生成
            "WhisperModel",  # Whisper模型
            "WhisperPreTrainedModel",  # Whisper预训练模型
        ]
    )
    _import_structure["models.x_clip"].extend(
        [
            "XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST",  # XCLIP模块的预训练模型归档列表
            "XCLIPModel",  # XCLIP模型
            "XCLIPPreTrainedModel",  # XCLIP预训练模型
            "XCLIPTextModel",  # XCLIP文本模型
            "XCLIPVisionModel",  # XCLIP视觉模型
        ]
    )
    _import_structure["models.xglm"].extend(
        [
            "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST",  # XGLM模块的预训练模型归档列表
            "XGLMForCausalLM",  # XGLM模型用于因果语言建模
            "XGLMModel",  # XGLM模型
            "XGLMPreTrainedModel",  # XGLM预训练模型
        ]
    )
    # 将以下模型名称添加到 _import_structure 字典的 "models.xlm" 键对应的值列表中
    _import_structure["models.xlm"].extend(
        [
            "XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
            "XLMForMultipleChoice",
            "XLMForQuestionAnswering",
            "XLMForQuestionAnsweringSimple",
            "XLMForSequenceClassification",
            "XLMForTokenClassification",
            "XLMModel",
            "XLMPreTrainedModel",
            "XLMWithLMHeadModel",
        ]
    )
    # 将以下模型名称添加到 _import_structure 字典的 "models.xlm_prophetnet" 键对应的值列表中
    _import_structure["models.xlm_prophetnet"].extend(
        [
            "XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST",
            "XLMProphetNetDecoder",
            "XLMProphetNetEncoder",
            "XLMProphetNetForCausalLM",
            "XLMProphetNetForConditionalGeneration",
            "XLMProphetNetModel",
            "XLMProphetNetPreTrainedModel",
        ]
    )
    # 将以下模型名称添加到 _import_structure 字典的 "models.xlm_roberta" 键对应的值列表中
    _import_structure["models.xlm_roberta"].extend(
        [
            "XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "XLMRobertaForCausalLM",
            "XLMRobertaForMaskedLM",
            "XLMRobertaForMultipleChoice",
            "XLMRobertaForQuestionAnswering",
            "XLMRobertaForSequenceClassification",
            "XLMRobertaForTokenClassification",
            "XLMRobertaModel",
            "XLMRobertaPreTrainedModel",
        ]
    )
    # 将以下模型名称添加到 _import_structure 字典的 "models.xlm_roberta_xl" 键对应的值列表中
    _import_structure["models.xlm_roberta_xl"].extend(
        [
            "XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST",
            "XLMRobertaXLForCausalLM",
            "XLMRobertaXLForMaskedLM",
            "XLMRobertaXLForMultipleChoice",
            "XLMRobertaXLForQuestionAnswering",
            "XLMRobertaXLForSequenceClassification",
            "XLMRobertaXLForTokenClassification",
            "XLMRobertaXLModel",
            "XLMRobertaXLPreTrainedModel",
        ]
    )
    # 将以下模型名称添加到 _import_structure 字典的 "models.xlnet" 键对应的值列表中
    _import_structure["models.xlnet"].extend(
        [
            "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST",
            "XLNetForMultipleChoice",
            "XLNetForQuestionAnswering",
            "XLNetForQuestionAnsweringSimple",
            "XLNetForSequenceClassification",
            "XLNetForTokenClassification",
            "XLNetLMHeadModel",
            "XLNetModel",
            "XLNetPreTrainedModel",
            "load_tf_weights_in_xlnet",
        ]
    )
    # 将以下模型名称添加到 _import_structure 字典的 "models.xmod" 键对应的值列表中
    _import_structure["models.xmod"].extend(
        [
            "XMOD_PRETRAINED_MODEL_ARCHIVE_LIST",
            "XmodForCausalLM",
            "XmodForMaskedLM",
            "XmodForMultipleChoice",
            "XmodForQuestionAnswering",
            "XmodForSequenceClassification",
            "XmodForTokenClassification",
            "XmodModel",
            "XmodPreTrainedModel",
        ]
    )
    # 将以下模型名称添加到 _import_structure 字典的 "models.yolos" 键对应的值列表中
    _import_structure["models.yolos"].extend(
        [
            "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST",
            "YolosForObjectDetection",
            "YolosModel",
            "YolosPreTrainedModel",
        ]
    )
    _import_structure["models.yoso"].extend(
        [
            "YOSO_PRETRAINED_MODEL_ARCHIVE_LIST",
            "YosoForMaskedLM",
            "YosoForMultipleChoice",
            "YosoForQuestionAnswering",
            "YosoForSequenceClassification",
            "YosoForTokenClassification",
            "YosoLayer",
            "YosoModel",
            "YosoPreTrainedModel",
        ]
    )
    # 将列表中的模块名称扩展到 "models.yoso" 的导入结构中
    _import_structure["optimization"] = [
        "Adafactor",
        "AdamW",
        "get_constant_schedule",
        "get_constant_schedule_with_warmup",
        "get_cosine_schedule_with_warmup",
        "get_cosine_with_hard_restarts_schedule_with_warmup",
        "get_inverse_sqrt_schedule",
        "get_linear_schedule_with_warmup",
        "get_polynomial_decay_schedule_with_warmup",
        "get_scheduler",
    ]
    # 设置 "optimization" 的导入结构为包含的优化模块列表
    _import_structure["pytorch_utils"] = [
        "Conv1D",
        "apply_chunking_to_forward",
        "prune_layer",
    ]
    # 设置 "pytorch_utils" 的导入结构为包含的 PyTorch 实用工具列表
    _import_structure["sagemaker"] = []
    # 设置 "sagemaker" 的导入结构为空列表
    _import_structure["time_series_utils"] = []
    # 设置 "time_series_utils" 的导入结构为空列表
    _import_structure["trainer"] = ["Trainer"]
    # 设置 "trainer" 的导入结构为包含单个元素 "Trainer" 的列表
    _import_structure["trainer_pt_utils"] = ["torch_distributed_zero_first"]
    # 设置 "trainer_pt_utils" 的导入结构为包含单个元素 "torch_distributed_zero_first" 的列表
    _import_structure["trainer_seq2seq"] = ["Seq2SeqTrainer"]
    # 设置 "trainer_seq2seq" 的导入结构为包含单个元素 "Seq2SeqTrainer" 的列表
# TensorFlow-backed objects
# 尝试检查是否可用 TensorFlow
try:
    if not is_tf_available():
        # 如果 TensorFlow 不可用,抛出自定义的依赖未满足异常
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    # 如果依赖未满足,从本地导入虚拟的 TensorFlow 对象
    from .utils import dummy_tf_objects

    # 更新导入结构,将 dummy_tf_objects 中非私有的对象名称添加到 _import_structure 中
    _import_structure["utils.dummy_tf_objects"] = [name for name in dir(dummy_tf_objects) if not name.startswith("_")]
else:
    # 如果 TensorFlow 可用,更新导入结构来包含以下模块和类
    _import_structure["activations_tf"] = []
    _import_structure["benchmark.benchmark_args_tf"] = ["TensorFlowBenchmarkArguments"]
    _import_structure["benchmark.benchmark_tf"] = ["TensorFlowBenchmark"]
    _import_structure["generation"].extend(
        [
            "TFForcedBOSTokenLogitsProcessor",
            "TFForcedEOSTokenLogitsProcessor",
            "TFForceTokensLogitsProcessor",
            "TFGenerationMixin",
            "TFLogitsProcessor",
            "TFLogitsProcessorList",
            "TFLogitsWarper",
            "TFMinLengthLogitsProcessor",
            "TFNoBadWordsLogitsProcessor",
            "TFNoRepeatNGramLogitsProcessor",
            "TFRepetitionPenaltyLogitsProcessor",
            "TFSuppressTokensAtBeginLogitsProcessor",
            "TFSuppressTokensLogitsProcessor",
            "TFTemperatureLogitsWarper",
            "TFTopKLogitsWarper",
            "TFTopPLogitsWarper",
        ]
    )
    _import_structure["generation_tf_utils"] = []
    _import_structure["keras_callbacks"] = ["KerasMetricCallback", "PushToHubCallback"]
    _import_structure["modeling_tf_outputs"] = []
    _import_structure["modeling_tf_utils"] = [
        "TFPreTrainedModel",
        "TFSequenceSummary",
        "TFSharedEmbeddings",
        "shape_list",
    ]
    # 更新导入结构,将 models.albert 中指定的类和常量添加到 _import_structure 中
    _import_structure["models.albert"].extend(
        [
            "TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFAlbertForMaskedLM",
            "TFAlbertForMultipleChoice",
            "TFAlbertForPreTraining",
            "TFAlbertForQuestionAnswering",
            "TFAlbertForSequenceClassification",
            "TFAlbertForTokenClassification",
            "TFAlbertMainLayer",
            "TFAlbertModel",
            "TFAlbertPreTrainedModel",
        ]
    )
    # 将 "models.auto" 下的模型名称列表扩展,添加多个 TensorFlow 模型映射
    _import_structure["models.auto"].extend(
        [
            "TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING",  # 音频分类模型映射
            "TF_MODEL_FOR_CAUSAL_LM_MAPPING",  # 因果语言模型映射
            "TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING",  # 文档问答模型映射
            "TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING",  # 图像分类模型映射
            "TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING",  # 掩膜图像建模模型映射
            "TF_MODEL_FOR_MASKED_LM_MAPPING",  # 掩膜语言模型映射
            "TF_MODEL_FOR_MASK_GENERATION_MAPPING",  # 掩膜生成模型映射
            "TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING",  # 多项选择模型映射
            "TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING",  # 下一句预测模型映射
            "TF_MODEL_FOR_PRETRAINING_MAPPING",  # 预训练模型映射
            "TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING",  # 问答模型映射
            "TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING",  # 语义分割模型映射
            "TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING",  # 序列到序列因果语言模型映射
            "TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING",  # 序列分类模型映射
            "TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING",  # 语音序列到序列模型映射
            "TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING",  # 表格问答模型映射
            "TF_MODEL_FOR_TEXT_ENCODING_MAPPING",  # 文本编码模型映射
            "TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING",  # 标记分类模型映射
            "TF_MODEL_FOR_VISION_2_SEQ_MAPPING",  # 视觉到序列模型映射
            "TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING",  # 零样本图像分类模型映射
            "TF_MODEL_MAPPING",  # TensorFlow 模型映射
            "TF_MODEL_WITH_LM_HEAD_MAPPING",  # 带语言模型头的 TensorFlow 模型映射
            "TFAutoModel",  # 自动选择模型
            "TFAutoModelForAudioClassification",  # 自动选择音频分类模型
            "TFAutoModelForCausalLM",  # 自动选择因果语言模型
            "TFAutoModelForDocumentQuestionAnswering",  # 自动选择文档问答模型
            "TFAutoModelForImageClassification",  # 自动选择图像分类模型
            "TFAutoModelForMaskedImageModeling",  # 自动选择掩膜图像建模模型
            "TFAutoModelForMaskedLM",  # 自动选择掩膜语言模型
            "TFAutoModelForMaskGeneration",  # 自动选择掩膜生成模型
            "TFAutoModelForMultipleChoice",  # 自动选择多项选择模型
            "TFAutoModelForNextSentencePrediction",  # 自动选择下一句预测模型
            "TFAutoModelForPreTraining",  # 自动选择预训练模型
            "TFAutoModelForQuestionAnswering",  # 自动选择问答模型
            "TFAutoModelForSemanticSegmentation",  # 自动选择语义分割模型
            "TFAutoModelForSeq2SeqLM",  # 自动选择序列到序列语言模型
            "TFAutoModelForSequenceClassification",  # 自动选择序列分类模型
            "TFAutoModelForSpeechSeq2Seq",  # 自动选择语音序列到序列模型
            "TFAutoModelForTableQuestionAnswering",  # 自动选择表格问答模型
            "TFAutoModelForTextEncoding",  # 自动选择文本编码模型
            "TFAutoModelForTokenClassification",  # 自动选择标记分类模型
            "TFAutoModelForVision2Seq",  # 自动选择视觉到序列模型
            "TFAutoModelForZeroShotImageClassification",  # 自动选择零样本图像分类模型
            "TFAutoModelWithLMHead",  # 自动选择带语言模型头的模型
        ]
    )

    # 将 "models.bart" 下的模型名称列表扩展,添加多个 TFBart 模型映射
    _import_structure["models.bart"].extend(
        [
            "TFBartForConditionalGeneration",  # 条件生成模型
            "TFBartForSequenceClassification",  # 序列分类模型
            "TFBartModel",  # BART 模型
            "TFBartPretrainedModel",  # 预训练的 BART 模型
        ]
    )
    # 将 "models.bert" 中的模块列表扩展,包括多个预训练模型和类
    _import_structure["models.bert"].extend(
        [
            "TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFBertEmbeddings",
            "TFBertForMaskedLM",
            "TFBertForMultipleChoice",
            "TFBertForNextSentencePrediction",
            "TFBertForPreTraining",
            "TFBertForQuestionAnswering",
            "TFBertForSequenceClassification",
            "TFBertForTokenClassification",
            "TFBertLMHeadModel",
            "TFBertMainLayer",
            "TFBertModel",
            "TFBertPreTrainedModel",
        ]
    )
    # 将 "models.blenderbot" 中的模块列表扩展,包括条件生成、模型和预训练模型
    _import_structure["models.blenderbot"].extend(
        [
            "TFBlenderbotForConditionalGeneration",
            "TFBlenderbotModel",
            "TFBlenderbotPreTrainedModel",
        ]
    )
    # 将 "models.blenderbot_small" 中的模块列表扩展,包括条件生成、模型和预训练模型
    _import_structure["models.blenderbot_small"].extend(
        [
            "TFBlenderbotSmallForConditionalGeneration",
            "TFBlenderbotSmallModel",
            "TFBlenderbotSmallPreTrainedModel",
        ]
    )
    # 将 "models.blip" 中的模块列表扩展,包括条件生成、图像文本检索、问答、模型和预训练模型
    _import_structure["models.blip"].extend(
        [
            "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFBlipForConditionalGeneration",
            "TFBlipForImageTextRetrieval",
            "TFBlipForQuestionAnswering",
            "TFBlipModel",
            "TFBlipPreTrainedModel",
            "TFBlipTextModel",
            "TFBlipVisionModel",
        ]
    )
    # 将 "models.camembert" 中的模块列表扩展,包括语言建模、多项选择、问答、分类、标记分类、模型和预训练模型
    _import_structure["models.camembert"].extend(
        [
            "TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFCamembertForCausalLM",
            "TFCamembertForMaskedLM",
            "TFCamembertForMultipleChoice",
            "TFCamembertForQuestionAnswering",
            "TFCamembertForSequenceClassification",
            "TFCamembertForTokenClassification",
            "TFCamembertModel",
            "TFCamembertPreTrainedModel",
        ]
    )
    # 将 "models.clip" 中的模块列表扩展,包括语言与图像交互的模型和预训练模型
    _import_structure["models.clip"].extend(
        [
            "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFCLIPModel",
            "TFCLIPPreTrainedModel",
            "TFCLIPTextModel",
            "TFCLIPVisionModel",
        ]
    )
    # 将 "models.convbert" 中的模块列表扩展,包括语言建模、多项选择、问答、分类、标记分类、层和预训练模型
    _import_structure["models.convbert"].extend(
        [
            "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFConvBertForMaskedLM",
            "TFConvBertForMultipleChoice",
            "TFConvBertForQuestionAnswering",
            "TFConvBertForSequenceClassification",
            "TFConvBertForTokenClassification",
            "TFConvBertLayer",
            "TFConvBertModel",
            "TFConvBertPreTrainedModel",
        ]
    )
    # 将 "models.convnext" 中的模块列表扩展,包括图像分类、模型和预训练模型
    _import_structure["models.convnext"].extend(
        [
            "TFConvNextForImageClassification",
            "TFConvNextModel",
            "TFConvNextPreTrainedModel",
        ]
    )
    # 将 "models.convnextv2" 中的模块列表扩展,包括图像分类、模型和预训练模型
    _import_structure["models.convnextv2"].extend(
        [
            "TFConvNextV2ForImageClassification",
            "TFConvNextV2Model",
            "TFConvNextV2PreTrainedModel",
        ]
    )
    # 将指定模块中的多个成员添加到_import_structure字典中的“models.ctrl”部分
    _import_structure["models.ctrl"].extend(
        [
            "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFCTRLForSequenceClassification",
            "TFCTRLLMHeadModel",
            "TFCTRLModel",
            "TFCTRLPreTrainedModel",
        ]
    )
    # 将指定模块中的多个成员添加到_import_structure字典中的“models.cvt”部分
    _import_structure["models.cvt"].extend(
        [
            "TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFCvtForImageClassification",
            "TFCvtModel",
            "TFCvtPreTrainedModel",
        ]
    )
    # 将指定模块中的多个成员添加到_import_structure字典中的“models.data2vec”部分
    _import_structure["models.data2vec"].extend(
        [
            "TFData2VecVisionForImageClassification",
            "TFData2VecVisionForSemanticSegmentation",
            "TFData2VecVisionModel",
            "TFData2VecVisionPreTrainedModel",
        ]
    )
    # 将指定模块中的多个成员添加到_import_structure字典中的“models.deberta”部分
    _import_structure["models.deberta"].extend(
        [
            "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFDebertaForMaskedLM",
            "TFDebertaForQuestionAnswering",
            "TFDebertaForSequenceClassification",
            "TFDebertaForTokenClassification",
            "TFDebertaModel",
            "TFDebertaPreTrainedModel",
        ]
    )
    # 将指定模块中的多个成员添加到_import_structure字典中的“models.deberta_v2”部分
    _import_structure["models.deberta_v2"].extend(
        [
            "TF_DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFDebertaV2ForMaskedLM",
            "TFDebertaV2ForMultipleChoice",
            "TFDebertaV2ForQuestionAnswering",
            "TFDebertaV2ForSequenceClassification",
            "TFDebertaV2ForTokenClassification",
            "TFDebertaV2Model",
            "TFDebertaV2PreTrainedModel",
        ]
    )
    # 将指定模块中的多个成员添加到_import_structure字典中的“models.deit”部分
    _import_structure["models.deit"].extend(
        [
            "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFDeiTForImageClassification",
            "TFDeiTForImageClassificationWithTeacher",
            "TFDeiTForMaskedImageModeling",
            "TFDeiTModel",
            "TFDeiTPreTrainedModel",
        ]
    )
    # 将指定模块中的多个成员添加到_import_structure字典中的“models.deprecated.transfo_xl”部分
    _import_structure["models.deprecated.transfo_xl"].extend(
        [
            "TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFAdaptiveEmbedding",
            "TFTransfoXLForSequenceClassification",
            "TFTransfoXLLMHeadModel",
            "TFTransfoXLMainLayer",
            "TFTransfoXLModel",
            "TFTransfoXLPreTrainedModel",
        ]
    )
    # 将指定模块中的多个成员添加到_import_structure字典中的“models.distilbert”部分
    _import_structure["models.distilbert"].extend(
        [
            "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFDistilBertForMaskedLM",
            "TFDistilBertForMultipleChoice",
            "TFDistilBertForQuestionAnswering",
            "TFDistilBertForSequenceClassification",
            "TFDistilBertForTokenClassification",
            "TFDistilBertMainLayer",
            "TFDistilBertModel",
            "TFDistilBertPreTrainedModel",
        ]
    )
    # 将指定模块中的类和常量列表添加到_import_structure字典中的"models.dpr"键下
    _import_structure["models.dpr"].extend(
        [
            "TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFDPRContextEncoder",
            "TFDPRPretrainedContextEncoder",
            "TFDPRPretrainedQuestionEncoder",
            "TFDPRPretrainedReader",
            "TFDPRQuestionEncoder",
            "TFDPRReader",
        ]
    )
    
    # 将指定模块中的类和常量列表添加到_import_structure字典中的"models.efficientformer"键下
    _import_structure["models.efficientformer"].extend(
        [
            "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFEfficientFormerForImageClassification",
            "TFEfficientFormerForImageClassificationWithTeacher",
            "TFEfficientFormerModel",
            "TFEfficientFormerPreTrainedModel",
        ]
    )
    
    # 将指定模块中的类和常量列表添加到_import_structure字典中的"models.electra"键下
    _import_structure["models.electra"].extend(
        [
            "TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFElectraForMaskedLM",
            "TFElectraForMultipleChoice",
            "TFElectraForPreTraining",
            "TFElectraForQuestionAnswering",
            "TFElectraForSequenceClassification",
            "TFElectraForTokenClassification",
            "TFElectraModel",
            "TFElectraPreTrainedModel",
        ]
    )
    
    # 将指定模块中的"TFEncoderDecoderModel"类添加到_import_structure字典中的"models.encoder_decoder"键下
    _import_structure["models.encoder_decoder"].append("TFEncoderDecoderModel")
    
    # 将指定模块中的类和常量列表添加到_import_structure字典中的"models.esm"键下
    _import_structure["models.esm"].extend(
        [
            "ESM_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFEsmForMaskedLM",
            "TFEsmForSequenceClassification",
            "TFEsmForTokenClassification",
            "TFEsmModel",
            "TFEsmPreTrainedModel",
        ]
    )
    
    # 将指定模块中的类和常量列表添加到_import_structure字典中的"models.flaubert"键下
    _import_structure["models.flaubert"].extend(
        [
            "TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFFlaubertForMultipleChoice",
            "TFFlaubertForQuestionAnsweringSimple",
            "TFFlaubertForSequenceClassification",
            "TFFlaubertForTokenClassification",
            "TFFlaubertModel",
            "TFFlaubertPreTrainedModel",
            "TFFlaubertWithLMHeadModel",
        ]
    )
    
    # 将指定模块中的类和常量列表添加到_import_structure字典中的"models.funnel"键下
    _import_structure["models.funnel"].extend(
        [
            "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFFunnelBaseModel",
            "TFFunnelForMaskedLM",
            "TFFunnelForMultipleChoice",
            "TFFunnelForPreTraining",
            "TFFunnelForQuestionAnswering",
            "TFFunnelForSequenceClassification",
            "TFFunnelForTokenClassification",
            "TFFunnelModel",
            "TFFunnelPreTrainedModel",
        ]
    )
    
    # 将指定模块中的类和常量列表添加到_import_structure字典中的"models.gpt2"键下
    _import_structure["models.gpt2"].extend(
        [
            "TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFGPT2DoubleHeadsModel",
            "TFGPT2ForSequenceClassification",
            "TFGPT2LMHeadModel",
            "TFGPT2MainLayer",
            "TFGPT2Model",
            "TFGPT2PreTrainedModel",
        ]
    )
    # 将指定模块下的类名添加到导入结构中
    _import_structure["models.gptj"].extend(
        [
            "TFGPTJForCausalLM",  # 添加 GPTJ 的条件语言模型类
            "TFGPTJForQuestionAnswering",  # 添加 GPTJ 的问答模型类
            "TFGPTJForSequenceClassification",  # 添加 GPTJ 的序列分类模型类
            "TFGPTJModel",  # 添加 GPTJ 的基础模型类
            "TFGPTJPreTrainedModel",  # 添加 GPTJ 的预训练模型基类
        ]
    )
    # 将指定模块下的类名添加到导入结构中
    _import_structure["models.groupvit"].extend(
        [
            "TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",  # 添加 GroupViT 预训练模型存档列表
            "TFGroupViTModel",  # 添加 GroupViT 模型类
            "TFGroupViTPreTrainedModel",  # 添加 GroupViT 预训练模型基类
            "TFGroupViTTextModel",  # 添加 GroupViT 文本模型类
            "TFGroupViTVisionModel",  # 添加 GroupViT 视觉模型类
        ]
    )
    # 将指定模块下的类名添加到导入结构中
    _import_structure["models.hubert"].extend(
        [
            "TF_HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST",  # 添加 Hubert 预训练模型存档列表
            "TFHubertForCTC",  # 添加 Hubert CTC 模型类
            "TFHubertModel",  # 添加 Hubert 模型类
            "TFHubertPreTrainedModel",  # 添加 Hubert 预训练模型基类
        ]
    )
    # 将指定模块下的类名添加到导入结构中
    _import_structure["models.layoutlm"].extend(
        [
            "TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST",  # 添加 LayoutLM 预训练模型存档列表
            "TFLayoutLMForMaskedLM",  # 添加 LayoutLM 掩码语言模型类
            "TFLayoutLMForQuestionAnswering",  # 添加 LayoutLM 问答模型类
            "TFLayoutLMForSequenceClassification",  # 添加 LayoutLM 序列分类模型类
            "TFLayoutLMForTokenClassification",  # 添加 LayoutLM 标记分类模型类
            "TFLayoutLMMainLayer",  # 添加 LayoutLM 主层类
            "TFLayoutLMModel",  # 添加 LayoutLM 模型类
            "TFLayoutLMPreTrainedModel",  # 添加 LayoutLM 预训练模型基类
        ]
    )
    # 将指定模块下的类名添加到导入结构中
    _import_structure["models.layoutlmv3"].extend(
        [
            "TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST",  # 添加 LayoutLMv3 预训练模型存档列表
            "TFLayoutLMv3ForQuestionAnswering",  # 添加 LayoutLMv3 问答模型类
            "TFLayoutLMv3ForSequenceClassification",  # 添加 LayoutLMv3 序列分类模型类
            "TFLayoutLMv3ForTokenClassification",  # 添加 LayoutLMv3 标记分类模型类
            "TFLayoutLMv3Model",  # 添加 LayoutLMv3 模型类
            "TFLayoutLMv3PreTrainedModel",  # 添加 LayoutLMv3 预训练模型基类
        ]
    )
    # 将指定模块下的类名添加到导入结构中
    _import_structure["models.led"].extend(
        [
            "TFLEDForConditionalGeneration",  # 添加 LED 有条件生成模型类
            "TFLEDModel",  # 添加 LED 模型类
            "TFLEDPreTrainedModel",  # 添加 LED 预训练模型基类
        ]
    )
    # 将指定模块下的类名添加到导入结构中
    _import_structure["models.longformer"].extend(
        [
            "TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",  # 添加 Longformer 预训练模型存档列表
            "TFLongformerForMaskedLM",  # 添加 Longformer 掩码语言模型类
            "TFLongformerForMultipleChoice",  # 添加 Longformer 多项选择模型类
            "TFLongformerForQuestionAnswering",  # 添加 Longformer 问答模型类
            "TFLongformerForSequenceClassification",  # 添加 Longformer 序列分类模型类
            "TFLongformerForTokenClassification",  # 添加 Longformer 标记分类模型类
            "TFLongformerModel",  # 添加 Longformer 模型类
            "TFLongformerPreTrainedModel",  # 添加 Longformer 预训练模型基类
            "TFLongformerSelfAttention",  # 添加 Longformer 自注意力类
        ]
    )
    # 将指定模块下的类名添加到导入结构中
    _import_structure["models.lxmert"].extend(
        [
            "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST",  # 添加 LXMERT 预训练模型存档列表
            "TFLxmertForPreTraining",  # 添加 LXMERT 预训练模型类
            "TFLxmertMainLayer",  # 添加 LXMERT 主层类
            "TFLxmertModel",  # 添加 LXMERT 模型类
            "TFLxmertPreTrainedModel",  # 添加 LXMERT 预训练模型基类
            "TFLxmertVisualFeatureEncoder",  # 添加 LXMERT 视觉特征编码器类
        ]
    )
    # 将指定模块下的类名添加到导入结构中
    _import_structure["models.marian"].extend(
        [
            "TFMarianModel",  # 添加 Marian 模型类
            "TFMarianMTModel",  # 添加 Marian 机器翻译模型类
            "TFMarianPreTrainedModel",  # 添加 Marian 预训练模型基类
        ]
    )
    # 将指定模块下的类名添加到导入结构中
    _import_structure["models.mbart"].extend(
        [
            "TFMBartForConditionalGeneration",  # 添加 MBart 有条件生成模型类
            "TFMBartModel",  # 添加 MBart 模型类
            "TFMBartPreTrainedModel",  # 添加 MBart 预训练模型基类
        ]
    )
    # 扩展_import_structure字典中"models.mobilebert"的内容
    _import_structure["models.mobilebert"].extend(
        [
            "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST",  # 添加预训练模型归档列表
            "TFMobileBertForMaskedLM",  # MobileBERT的Masked Language Model
            "TFMobileBertForMultipleChoice",  # MobileBERT的多选题模型
            "TFMobileBertForNextSentencePrediction",  # MobileBERT的下一句预测模型
            "TFMobileBertForPreTraining",  # MobileBERT的预训练模型
            "TFMobileBertForQuestionAnswering",  # MobileBERT的问答模型
            "TFMobileBertForSequenceClassification",  # MobileBERT的序列分类模型
            "TFMobileBertForTokenClassification",  # MobileBERT的标记分类模型
            "TFMobileBertMainLayer",  # MobileBERT的主层
            "TFMobileBertModel",  # MobileBERT的模型
            "TFMobileBertPreTrainedModel",  # MobileBERT的预训练模型基类
        ]
    )
    # 扩展_import_structure字典中"models.mobilevit"的内容
    _import_structure["models.mobilevit"].extend(
        [
            "TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST",  # 添加预训练模型归档列表
            "TFMobileViTForImageClassification",  # MobileViT的图像分类模型
            "TFMobileViTForSemanticSegmentation",  # MobileViT的语义分割模型
            "TFMobileViTModel",  # MobileViT的模型
            "TFMobileViTPreTrainedModel",  # MobileViT的预训练模型基类
        ]
    )
    # 扩展_import_structure字典中"models.mpnet"的内容
    _import_structure["models.mpnet"].extend(
        [
            "TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST",  # 添加预训练模型归档列表
            "TFMPNetForMaskedLM",  # MPNet的Masked Language Model
            "TFMPNetForMultipleChoice",  # MPNet的多选题模型
            "TFMPNetForQuestionAnswering",  # MPNet的问答模型
            "TFMPNetForSequenceClassification",  # MPNet的序列分类模型
            "TFMPNetForTokenClassification",  # MPNet的标记分类模型
            "TFMPNetMainLayer",  # MPNet的主层
            "TFMPNetModel",  # MPNet的模型
            "TFMPNetPreTrainedModel",  # MPNet的预训练模型基类
        ]
    )
    # 扩展_import_structure字典中"models.mt5"的内容
    _import_structure["models.mt5"].extend(
        [
            "TFMT5EncoderModel",  # MT5的编码器模型
            "TFMT5ForConditionalGeneration",  # MT5的条件生成模型
            "TFMT5Model",  # MT5的模型
        ]
    )
    # 扩展_import_structure字典中"models.openai"的内容
    _import_structure["models.openai"].extend(
        [
            "TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST",  # 添加预训练模型归档列表
            "TFOpenAIGPTDoubleHeadsModel",  # OpenAI GPT的双头模型
            "TFOpenAIGPTForSequenceClassification",  # OpenAI GPT的序列分类模型
            "TFOpenAIGPTLMHeadModel",  # OpenAI GPT的语言模型头
            "TFOpenAIGPTMainLayer",  # OpenAI GPT的主层
            "TFOpenAIGPTModel",  # OpenAI GPT的模型
            "TFOpenAIGPTPreTrainedModel",  # OpenAI GPT的预训练模型基类
        ]
    )
    # 扩展_import_structure字典中"models.opt"的内容
    _import_structure["models.opt"].extend(
        [
            "TFOPTForCausalLM",  # OPT的因果语言模型
            "TFOPTModel",  # OPT的模型
            "TFOPTPreTrainedModel",  # OPT的预训练模型基类
        ]
    )
    # 扩展_import_structure字典中"models.pegasus"的内容
    _import_structure["models.pegasus"].extend(
        [
            "TFPegasusForConditionalGeneration",  # Pegasus的条件生成模型
            "TFPegasusModel",  # Pegasus的模型
            "TFPegasusPreTrainedModel",  # Pegasus的预训练模型基类
        ]
    )
    # 扩展_import_structure字典中"models.rag"的内容
    _import_structure["models.rag"].extend(
        [
            "TFRagModel",  # RAG的模型
            "TFRagPreTrainedModel",  # RAG的预训练模型基类
            "TFRagSequenceForGeneration",  # RAG用于生成序列的模型
            "TFRagTokenForGeneration",  # RAG用于生成标记的模型
        ]
    )
    # 扩展_import_structure字典中"models.regnet"的内容
    _import_structure["models.regnet"].extend(
        [
            "TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST",  # 添加预训练模型归档列表
            "TFRegNetForImageClassification",  # RegNet的图像分类模型
            "TFRegNetModel",  # RegNet的模型
            "TFRegNetPreTrainedModel",  # RegNet的预训练模型基类
        ]
    )
    # 将以下模块的多个预定义名称添加到 _import_structure 字典中的相应模块下
    _import_structure["models.rembert"].extend(
        [
            "TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",  # REMBERT 模型的预训练模型存档列表
            "TFRemBertForCausalLM",  # 用于因果语言建模的 TFRemBert 模型
            "TFRemBertForMaskedLM",  # 用于遮蔽语言建模的 TFRemBert 模型
            "TFRemBertForMultipleChoice",  # 用于多选题的 TFRemBert 模型
            "TFRemBertForQuestionAnswering",  # 用于问答任务的 TFRemBert 模型
            "TFRemBertForSequenceClassification",  # 用于序列分类任务的 TFRemBert 模型
            "TFRemBertForTokenClassification",  # 用于标记分类任务的 TFRemBert 模型
            "TFRemBertLayer",  # REMBERT 模型的层定义
            "TFRemBertModel",  # REMBERT 模型的主模型
            "TFRemBertPreTrainedModel",  # REMBERT 模型的预训练模型基类
        ]
    )
    # 将以下模块的多个预定义名称添加到 _import_structure 字典中的相应模块下
    _import_structure["models.resnet"].extend(
        [
            "TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST",  # RESNET 模型的预训练模型存档列表
            "TFResNetForImageClassification",  # 用于图像分类的 TFResNet 模型
            "TFResNetModel",  # RESNET 模型的主模型
            "TFResNetPreTrainedModel",  # RESNET 模型的预训练模型基类
        ]
    )
    # 将以下模块的多个预定义名称添加到 _import_structure 字典中的相应模块下
    _import_structure["models.roberta"].extend(
        [
            "TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",  # ROBERTA 模型的预训练模型存档列表
            "TFRobertaForCausalLM",  # 用于因果语言建模的 TFRoberta 模型
            "TFRobertaForMaskedLM",  # 用于遮蔽语言建模的 TFRoberta 模型
            "TFRobertaForMultipleChoice",  # 用于多选题的 TFRoberta 模型
            "TFRobertaForQuestionAnswering",  # 用于问答任务的 TFRoberta 模型
            "TFRobertaForSequenceClassification",  # 用于序列分类任务的 TFRoberta 模型
            "TFRobertaForTokenClassification",  # 用于标记分类任务的 TFRoberta 模型
            "TFRobertaMainLayer",  # ROBERTA 模型的主层定义
            "TFRobertaModel",  # ROBERTA 模型的主模型
            "TFRobertaPreTrainedModel",  # ROBERTA 模型的预训练模型基类
        ]
    )
    # 将以下模块的多个预定义名称添加到 _import_structure 字典中的相应模块下
    _import_structure["models.roberta_prelayernorm"].extend(
        [
            "TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST",  # ROBERTA 模型带有预层标准化的预训练模型存档列表
            "TFRobertaPreLayerNormForCausalLM",  # 带有预层标准化的因果语言建模 TFRoberta 模型
            "TFRobertaPreLayerNormForMaskedLM",  # 带有预层标准化的遮蔽语言建模 TFRoberta 模型
            "TFRobertaPreLayerNormForMultipleChoice",  # 带有预层标准化的多选题 TFRoberta 模型
            "TFRobertaPreLayerNormForQuestionAnswering",  # 带有预层标准化的问答任务 TFRoberta 模型
            "TFRobertaPreLayerNormForSequenceClassification",  # 带有预层标准化的序列分类任务 TFRoberta 模型
            "TFRobertaPreLayerNormForTokenClassification",  # 带有预层标准化的标记分类任务 TFRoberta 模型
            "TFRobertaPreLayerNormMainLayer",  # 带有预层标准化的 ROBERTA 模型的主层定义
            "TFRobertaPreLayerNormModel",  # 带有预层标准化的 ROBERTA 模型的主模型
            "TFRobertaPreLayerNormPreTrainedModel",  # 带有预层标准化的 ROBERTA 模型的预训练模型基类
        ]
    )
    # 将以下模块的多个预定义名称添加到 _import_structure 字典中的相应模块下
    _import_structure["models.roformer"].extend(
        [
            "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",  # ROFORMER 模型的预训练模型存档列表
            "TFRoFormerForCausalLM",  # 用于因果语言建模的 TFRoFormer 模型
            "TFRoFormerForMaskedLM",  # 用于遮蔽语言建模的 TFRoFormer 模型
            "TFRoFormerForMultipleChoice",  # 用于多选题的 TFRoFormer 模型
            "TFRoFormerForQuestionAnswering",  # 用于问答任务的 TFRoFormer 模型
            "TFRoFormerForSequenceClassification",  # 用于序列分类任务的 TFRoFormer 模型
            "TFRoFormerForTokenClassification",  # 用于标记分类任务的 TFRoFormer 模型
            "TFRoFormerLayer",  # ROFORMER 模型的层定义
            "TFRoFormerModel",  # ROFORMER 模型的主模型
            "TFRoFormerPreTrainedModel",  # ROFORMER 模型的预训练模型基类
        ]
    )
    # 将以下模块的多个预定义名称添加到 _import_structure 字典中的相应模块下
    _import_structure["models.sam"].extend(
        [
            "TF_SAM_PRETRAINED_MODEL_ARCHIVE_LIST",  # SAM 模型的预训练模型存档列表
            "TFSamModel",  # SAM 模型的主模型
            "TFSamPreTrainedModel",  # SAM 模型的预训练模型基类
        ]
    )
    # 将以下模块的多个预定义名称添加到 _import_structure 字典中的相应模块下
    _import_structure["models.segformer"].extend(
        [
            "TF_SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",  # SEGFORMER 模型的预训练模型存档列表
            "TFSegformerDecodeHead",  # 用于解码头的 TFSegformer 模型
            "TFSegformerForImageClassification",  # 用于图像分类的 TFSegformer 模型
            "TFSegformerForSemanticSegmentation",  # 用于语义分割的 TFSegformer 模型
            "TFSegformerModel",  # SEGFORMER 模型的主模型
            "TFSegformerPreTrainedModel",  # SEGFORMER 模型的预训练模型基类
        ]
    )
    # 将"models.speech_to_text"模块中的特定名称列表添加到_import_structure字典中
    _import_structure["models.speech_to_text"].extend(
        [
            "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFSpeech2TextForConditionalGeneration",
            "TFSpeech2TextModel",
            "TFSpeech2TextPreTrainedModel",
        ]
    )
    
    # 将"models.swin"模块中的特定名称列表添加到_import_structure字典中
    _import_structure["models.swin"].extend(
        [
            "TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFSwinForImageClassification",
            "TFSwinForMaskedImageModeling",
            "TFSwinModel",
            "TFSwinPreTrainedModel",
        ]
    )
    
    # 将"models.t5"模块中的特定名称列表添加到_import_structure字典中
    _import_structure["models.t5"].extend(
        [
            "TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFT5EncoderModel",
            "TFT5ForConditionalGeneration",
            "TFT5Model",
            "TFT5PreTrainedModel",
        ]
    )
    
    # 将"models.tapas"模块中的特定名称列表添加到_import_structure字典中
    _import_structure["models.tapas"].extend(
        [
            "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFTapasForMaskedLM",
            "TFTapasForQuestionAnswering",
            "TFTapasForSequenceClassification",
            "TFTapasModel",
            "TFTapasPreTrainedModel",
        ]
    )
    
    # 将"models.vision_encoder_decoder"模块中的特定名称添加到_import_structure字典中
    _import_structure["models.vision_encoder_decoder"].extend(["TFVisionEncoderDecoderModel"])
    
    # 将"models.vision_text_dual_encoder"模块中的特定名称添加到_import_structure字典中
    _import_structure["models.vision_text_dual_encoder"].extend(["TFVisionTextDualEncoderModel"])
    
    # 将"models.vit"模块中的特定名称列表添加到_import_structure字典中
    _import_structure["models.vit"].extend(
        [
            "TFViTForImageClassification",
            "TFViTModel",
            "TFViTPreTrainedModel",
        ]
    )
    
    # 将"models.vit_mae"模块中的特定名称列表添加到_import_structure字典中
    _import_structure["models.vit_mae"].extend(
        [
            "TFViTMAEForPreTraining",
            "TFViTMAEModel",
            "TFViTMAEPreTrainedModel",
        ]
    )
    
    # 将"models.wav2vec2"模块中的特定名称列表添加到_import_structure字典中
    _import_structure["models.wav2vec2"].extend(
        [
            "TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFWav2Vec2ForCTC",
            "TFWav2Vec2ForSequenceClassification",
            "TFWav2Vec2Model",
            "TFWav2Vec2PreTrainedModel",
        ]
    )
    
    # 将"models.whisper"模块中的特定名称列表添加到_import_structure字典中
    _import_structure["models.whisper"].extend(
        [
            "TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFWhisperForConditionalGeneration",
            "TFWhisperModel",
            "TFWhisperPreTrainedModel",
        ]
    )
    
    # 将"models.xglm"模块中的特定名称列表添加到_import_structure字典中
    _import_structure["models.xglm"].extend(
        [
            "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFXGLMForCausalLM",
            "TFXGLMModel",
            "TFXGLMPreTrainedModel",
        ]
    )
    
    # 将"models.xlm"模块中的特定名称列表添加到_import_structure字典中
    _import_structure["models.xlm"].extend(
        [
            "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFXLMForMultipleChoice",
            "TFXLMForQuestionAnsweringSimple",
            "TFXLMForSequenceClassification",
            "TFXLMForTokenClassification",
            "TFXLMMainLayer",
            "TFXLMModel",
            "TFXLMPreTrainedModel",
            "TFXLMWithLMHeadModel",
        ]
    )
    # 扩展 _import_structure 中 "models.xlm_roberta" 的模块列表
    _import_structure["models.xlm_roberta"].extend(
        [
            "TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFXLMRobertaForCausalLM",
            "TFXLMRobertaForMaskedLM",
            "TFXLMRobertaForMultipleChoice",
            "TFXLMRobertaForQuestionAnswering",
            "TFXLMRobertaForSequenceClassification",
            "TFXLMRobertaForTokenClassification",
            "TFXLMRobertaModel",
            "TFXLMRobertaPreTrainedModel",
        ]
    )
    # 扩展 _import_structure 中 "models.xlnet" 的模块列表
    _import_structure["models.xlnet"].extend(
        [
            "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFXLNetForMultipleChoice",
            "TFXLNetForQuestionAnsweringSimple",
            "TFXLNetForSequenceClassification",
            "TFXLNetForTokenClassification",
            "TFXLNetLMHeadModel",
            "TFXLNetMainLayer",
            "TFXLNetModel",
            "TFXLNetPreTrainedModel",
        ]
    )
    # 将 "optimization_tf" 中的模块列表设置为指定的值
    _import_structure["optimization_tf"] = [
        "AdamWeightDecay",
        "GradientAccumulator",
        "WarmUp",
        "create_optimizer",
    ]
    # 将 "tf_utils" 中的模块列表设置为空列表
    _import_structure["tf_utils"] = []
# 检查是否所有的必需依赖库都可用:Librosa、Essentia、Scipy、Torch、Pretty MIDI
try:
    if not (
        is_librosa_available()
        and is_essentia_available()
        and is_scipy_available()
        and is_torch_available()
        and is_pretty_midi_available()
    ):
        # 如果有任何一个依赖库不可用,抛出OptionalDependencyNotAvailable异常
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    # 如果捕获到OptionalDependencyNotAvailable异常,则导入dummy模块,用于替代依赖库功能
    from .utils import (
        dummy_essentia_and_librosa_and_pretty_midi_and_scipy_and_torch_objects,
    )
    # 将dummy模块中非下划线开头的对象名添加到_import_structure字典中的相应位置
    _import_structure["utils.dummy_essen
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值