人工智能
文章平均质量分 88
绝不原创的飞龙
这个作者很懒,什么都没留下…
展开
-
《AI的25种可能》有声书视频制作完成
【AI的25种可能:第二十一章到第二十五章】 https://www.bilibili.com/video/BV1FXpoe5EPP/?【AI的25种可能:第十一章到第十五章】 https://www.bilibili.com/video/BV1uXpdexEYC/?【AI的25种可能:第十六章到第二十章】 https://www.bilibili.com/video/BV1hKpdedEqq/?原创 2024-11-28 11:28:47 · 259 阅读 · 0 评论 -
大语言模型四大名著完全中译
大语言模型四大名著。原创 2024-11-26 09:54:05 · 2446 阅读 · 0 评论 -
神经网络架构参考:2-2 卷积篇
下面是一个Dense Block的结构表格示例,这里以DenseNet-121中的第一个Dense Block为例,该Dense Block包含6个卷积层(每个卷积层由一个瓶颈层和一个3x3卷积层组成)。请注意,每个卷积层的输入大小是基于之前所有层的特征图合并后的结果。以下是一个简化的空间注意力模块的结构表格。请注意,这个表格是一个示例,实际的网络结构可能会有所不同。原创 2024-11-23 09:10:15 · 738 阅读 · 0 评论 -
神经网络架构参考:2-1 卷积篇
提示词:给出{xxx}的网络结构表格,包含层名称、类型、输入大小(HWC),输出大小(HWC)、核尺寸、步长、参数数量。原创 2024-11-23 09:09:44 · 961 阅读 · 0 评论 -
FLUX 源码解析(全)
.\flux\demo_gr.py# 导入操作系统相关模块import os# 导入时间相关模块import time# 从 io 模块导入 BytesIO 类from io import BytesIO# 导入 UUID 生成模块import uuid# 导入 PyTorch 库import torch# 导入 Gradio 库import gradio as gr# 导入 NumPy 库import numpy as np# 从 einops 模块导入 rearrange原创 2024-09-05 11:51:36 · 590 阅读 · 0 评论 -
【布客】已经制作完成的有声书
【超越想象的GPT医疗:第六章:延展大问题:如何让数学、编码和逻辑更可靠】【超越想象的GPT医疗:第二章:智能协作,GPT-4在医学中的超强潜力】【超越想象的GPT医疗:结语:欣赏AI的奇迹,人类智慧和无尽雄心的见证】【超越想象的GPT医疗:第一章:“达芬奇3”,与GPT-4的初次接触】【超越想象的GPT医疗:第九章:安全第一,在新的AI时代充分受益】【超越想象的GPT医疗:第三章:一个大问题:AI能“理解”吗】【超越想象的GPT医疗:引言:GPT-4医生的故事】原创 2024-08-10 13:16:08 · 1125 阅读 · 20 评论 -
《超越想象的GPT医疗》视频有声书制作完毕
【超越想象的GPT医疗:第二章:智能协作,GPT-4在医学中的超强潜力】 https://www.bilibili.com/video/BV1LAYveeEg1/?【超越想象的GPT医疗:结语:欣赏AI的奇迹,人类智慧和无尽雄心的见证】 https://www.bilibili.com/video/BV12TYLeFEVY/?【超越想象的GPT医疗:第一章:“达芬奇3”,与GPT-4的初次接触】 https://www.bilibili.com/video/BV1nXYee3EZB/?原创 2024-08-10 11:02:59 · 321 阅读 · 0 评论 -
《GPT时代人类再腾飞》视频有声书制作完毕
【GPT时代人类再腾飞:引言:一个灯泡的启蒙时刻】 https://www.bilibili.com/video/BV1CNYFeLEcH/?share_source=copy_web&vd_source=20bcb7c5926b4b296dd98bcf9a3c655a【GPT时代人类再腾飞:第一章:重塑教育】 https://www.bilibili.com/video/BV1AWafe5Eti/?share_source=copy_web&vd_source=20bcb7c5926b4b296dd98b原创 2024-08-10 10:49:28 · 425 阅读 · 0 评论 -
Transformers 4.37 中文文档(一百)
原文:huggingface.co/docs/transformers。原创 2024-06-23 12:15:19 · 843 阅读 · 0 评论 -
Transformers 4.37 中文文档(一)
原文:huggingface.co/docs/transformers开始吧🤗 Transformers原文链接:huggingface.co/docs/transformers/v4.37.2/en/indexPyTorch、TensorFlow和JAX的最先进机器学习。🤗 Transformers 提供 API 和工具,可以轻松下载和训练最先进的预训练模型。使用预训练模型可以减少计算成本、碳足迹,并节省训练模型所需的时间和资源。这些模型支持不同模态中的常见任务,例如:📝 自然语言处理原创 2024-06-23 12:14:48 · 1213 阅读 · 0 评论 -
Transformers 4.37 中文文档(五十一)
PEGASUS-X 模型由 Jason Phang、Yao Zhao 和 Peter J. Liu 在中提出。PEGASUS-X(PEGASUS eXtended)通过额外的长输入预训练和在编码器中使用交错的块局部注意力与全局标记,扩展了 PEGASUS 模型,用于长输入摘要。该论文的摘要如下:尽管大型预训练 Transformer 模型已被证明在处理自然语言任务方面非常有能力,但处理长序列输入仍然是一个重大挑战。其中一个任务是长输入摘要,其中输入长于大多数预训练模型的最大输入上下文。原创 2024-06-23 12:14:18 · 1043 阅读 · 0 评论 -
Transformers 4.37 中文文档(五十五)
原文:huggingface.co/docs/transformersRetriBERT原文:huggingface.co/docs/transformers/v4.37.2/en/model_doc/retribert此模型仅处于维护模式,因此我们不会接受任何更改其代码的新 PR。如果您在运行此模型时遇到任何问题,请重新安装支持此模型的最后一个版本:v4.30.0。您可以通过运行以下命令来执行:pip install -U transformers==4.30.0。概述RetriBER原创 2024-06-23 12:13:48 · 760 阅读 · 0 评论 -
Transformers 4.37 中文文档(五十四)
原文:huggingface.co/docs/transformersREALM原始文本:huggingface.co/docs/transformers/v4.37.2/en/model_doc/realm概述REALM 模型是由 Kelvin Guu、Kenton Lee、Zora Tung、Panupong Pasupat 和 Ming-Wei Chang 在REALM: Retrieval-Augmented Language Model Pre-Training中提出的。这是一个检原创 2024-06-23 12:13:17 · 999 阅读 · 0 评论 -
Transformers 4.37 中文文档(五十三)
Qwen2 是 Qwen 团队推出的大型语言模型新系列。之前,我们发布了 Qwen 系列,包括 Qwen-72B、Qwen-1.8B、Qwen-VL、Qwen-Audio 等。检索增强生成(“RAG”)模型结合了预训练的密集检索(DPR)和序列到序列模型的能力。RAG 模型检索文档,将其传递给 seq2seq 模型,然后进行边缘化以生成输出。检索器和 seq2seq 模块是从预训练模型初始化的,并进行联合微调,使得检索和生成都能够适应下游任务。原创 2024-06-23 12:12:45 · 1332 阅读 · 0 评论 -
Transformers 4.37 中文文档(五十七)
原文:huggingface.co/docs/transformersRoCBert原始文本:huggingface.co/docs/transformers/v4.37.2/en/model_doc/roc_bert概述RoCBert 模型是由 HuiSu、WeiweiShi、XiaoyuShen、XiaoZhou、TuoJi、JiaruiFang、JieZhou 在 RoCBert: Robust Chinese Bert with Multimodal Contrastive Pret原创 2024-06-23 12:12:12 · 845 阅读 · 0 评论 -
Transformers 4.37 中文文档(五十六)
原文:huggingface.co/docs/transformersRoBERTa-PreLayerNorm原文链接: huggingface.co/docs/transformers/v4.37.2/en/model_doc/roberta-prelayernorm概述RoBERTa-PreLayerNorm 模型由 Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grang原创 2024-06-23 12:11:41 · 964 阅读 · 0 评论 -
Transformers 4.37 中文文档(五十九)
原文:huggingface.co/docs/transformersSwitchTransformers原文链接: huggingface.co/docs/transformers/v4.37.2/en/model_doc/switch_transformers概述SwitchTransformers 模型是由 William Fedus、Barret Zoph 和 Noam Shazeer 在Switch Transformers: Scaling to Trillion Paramet原创 2024-06-23 12:11:10 · 1163 阅读 · 0 评论 -
Transformers 4.37 中文文档(五十二)
ProphetNet 模型是由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang, Ming Zhou 于 2020 年 1 月 13 日提出的。ProphetNet 是一个编码器-解码器模型,可以预测“ngram”语言建模的 n 个未来标记,而不仅仅是下一个标记。原创 2024-06-23 12:10:33 · 626 阅读 · 0 评论 -
Transformers 4.37 中文文档(五十八)
RWKV 模型是在此存储库中提出的。它建议对传统 Transformer 注意力进行微调,使其线性化。这样,模型可以用作循环网络:同时传递时间戳 0 和时间戳 1 的输入与在时间戳 0 传递输入,然后在时间戳 1 传递输入以及时间戳 0 的状态是相同的(见下面的示例)。这比常规 Transformer 更有效,并且可以处理任意长度的句子(即使模型在训练时使用固定的上下文长度)。这个模型是由sgugger贡献的。原始代码可以在这里找到。原创 2024-06-23 12:10:03 · 790 阅读 · 0 评论 -
Transformers 4.37 中文文档(五十)
原文:huggingface.co/docs/transformersOPT原文链接:huggingface.co/docs/transformers/v4.37.2/en/model_doc/opt概述OPT 模型是由 Meta AI 在Open Pre-trained Transformer Language Models中提出的。OPT 是一系列开源的大型因果语言模型,性能与 GPT3 相似。该论文的摘要如下:大型语言模型通常经过数十万计算天的训练,展现出了零次和少次学习的显著能力原创 2024-06-23 12:09:30 · 809 阅读 · 0 评论 -
Transformers 4.37 中文文档(五)
原文:huggingface.co/docs/transformers目标检测原始文本:huggingface.co/docs/transformers/v4.37.2/en/tasks/object_detection目标检测是计算机视觉任务,用于检测图像中的实例(如人类、建筑物或汽车)。目标检测模型接收图像作为输入,并输出检测到的对象的边界框的坐标和相关标签。一幅图像可以包含多个对象,每个对象都有自己的边界框和标签(例如,它可以有一辆汽车和一座建筑物),每个对象可以出现在图像的不同部分(例原创 2024-06-23 12:09:00 · 1153 阅读 · 0 评论 -
Transformers 4.37 中文文档(四十一)
原文:huggingface.co/docs/transformersLongT5原始文本:huggingface.co/docs/transformers/v4.37.2/en/model_doc/longt5概述LongT5 模型是由 Mandy Guo、Joshua Ainslie、David Uthus、Santiago Ontanon、Jianmo Ni、Yun-Hsuan Sung 和 Yinfei Yang 在LongT5: Efficient Text-To-Text Tra原创 2024-06-23 12:08:24 · 965 阅读 · 0 评论 -
Transformers 4.37 中文文档(四十五)
原文:huggingface.co/docs/transformersMegatronGPT2原文链接:huggingface.co/docs/transformers/v4.37.2/en/model_doc/megatron_gpt2概述MegatronGPT2 模型是由 Mohammad Shoeybi、Mostofa Patwary、Raul Puri、Patrick LeGresley、Jared Casper 和 Bryan Catanzaro 在使用模型并行训练多十亿参数语言模原创 2024-06-23 12:07:24 · 963 阅读 · 0 评论 -
Transformers 4.37 中文文档(四十四)
MEGA 模型是由 Xuezhe Ma、Chunting Zhou、Xiang Kong、Junxian He、Liangke Gui、Graham Neubig、Jonathan May 和 Luke Zettlemoyer 在中提出的。MEGA 提出了一种新的自注意力方法,每个编码器层除了具有标准点积注意力的单头之外,还具有多头指数移动平均,使得注意机制具有更强的位置偏差。这使得 MEGA 在标准基准测试中表现出色,包括 LRA,同时参数数量明显较少。原创 2024-06-23 12:06:54 · 597 阅读 · 0 评论 -
Transformers 4.37 中文文档(四十三)
原文:huggingface.co/docs/transformersMBart 和 MBart-50原文链接:huggingface.co/docs/transformers/v4.37.2/en/model_doc/mbart MBart 概述MBart 模型是由 Yinhan Liu、Jiatao Gu、Naman Goyal、Xian Li、Sergey Edunov、Marjan Ghazvininejad、Mike Lewis、Luke Zettlemoyer 在多语言去噪预训原创 2024-06-23 12:06:23 · 1029 阅读 · 0 评论 -
Transformers 4.37 中文文档(四十七)
原文:huggingface.co/docs/transformersMRA原始文本:huggingface.co/docs/transformers/v4.37.2/en/model_doc/mra概述MRA 模型由 Zhanpeng Zeng、Sourav Pal、Jeffery Kline、Glenn M Fung 和 Vikas Singh 在Multi Resolution Analysis (MRA) for Approximate Self-Attention中提出。论文摘要原创 2024-06-23 12:05:52 · 920 阅读 · 0 评论 -
Transformers 4.37 中文文档(四十六)
MPNet 模型由 Kaitao Song,Xu Tan,Tao Qin,Jianfeng Lu,Tie-Yan Liu 在中提出。MPNet 采用一种新颖的预训练方法,称为掩码和置换语言建模,以继承掩码语言建模和置换语言建模在自然语言理解方面的优势。该论文的摘要如下:BERT 采用了掩码语言建模(MLM)进行预训练,是最成功的预训练模型之一。由于 BERT 忽略了预测标记之间的依赖关系,XLNet 引入了置换语言建模(PLM)进行预训练以解决这个问题。原创 2024-06-23 12:05:22 · 806 阅读 · 0 评论 -
Transformers 4.37 中文文档(四十九)
免责声明: 分词器的默认行为已在 2023 年 4 月修复并更改。之前的版本在目标和源分词序列的末尾都添加了 。这是错误的,因为 NLLB 论文提到了 (第 48 页,6.1.1. 模型架构):请注意,我们将源序列前缀与源语言一起使用,而不是像以前的一些作品那样使用目标语言 (Arivazhagan 等人,2019;Johnson 等人,2017)。这主要是因为我们优先考虑在任何一对 200 种语言上优化我们模型的零翻译性能,对监督性能的损失很小。先前的行为:新行为可以通过以下方式启用旧行为:更多细节原创 2024-06-23 12:04:50 · 831 阅读 · 0 评论 -
Transformers 4.37 中文文档(四十二)
原文:huggingface.co/docs/transformersM2M100原始文本:huggingface.co/docs/transformers/v4.37.2/en/model_doc/m2m_100概述M2M100 模型是由 Angela Fan、Shruti Bhosale、Holger Schwenk、Zhiyi Ma、Ahmed El-Kishky、Siddharth Goyal、Mandeep Baines、Onur Celebi、Guillaume Wenzek、V原创 2024-06-23 12:04:20 · 1119 阅读 · 0 评论 -
Transformers 4.37 中文文档(四十八)
原文:huggingface.co/docs/transformersMVP原文:huggingface.co/docs/transformers/v4.37.2/en/model_doc/mvp概述MVP 模型由唐天一、李俊毅、赵新文和文继荣在《MVP: 多任务监督预训练用于自然语言生成》中提出。根据摘要,MVP 遵循标准的 Transformer 编码器-解码器架构。MVP 是使用标记数据集进行监督预训练的。MVP 还具有任务特定的软提示,以激发模型在执行特定任务时的原创 2024-06-23 12:03:46 · 1027 阅读 · 0 评论 -
Transformers 4.37 中文文档(四十)
原文:huggingface.co/docs/transformersLLaMA原始文本:huggingface.co/docs/transformers/v4.37.2/en/model_doc/llama概述Hugo Touvron、Thibaut Lavril、Gautier Izacard、Xavier Martinet、Marie-Anne Lachaux、Timothée Lacroix、Baptiste Rozière、Naman Goyal、Eric Hambro、Faisa原创 2024-06-23 12:03:16 · 1267 阅读 · 0 评论 -
Transformers 4.37 中文文档(四)
如果您更喜欢使用脚本而不是笔记本实例进行训练,您也可以创建并使用自己的数据集。该脚本需要:一个包含两个Image列“image”和“label”的。一个 id2label 字典,将类整数映射到它们的类名例如,查看这个示例数据集,该数据集是使用上述步骤创建的。原创 2024-06-23 12:02:45 · 829 阅读 · 0 评论 -
Transformers 4.37 中文文档(十一)
原始文本:huggingface.co/docs/transformers/v4.37.2/en/add_new_pipeline在本指南中,我们将看到如何创建自定义管道并在Hub上共享它或将其添加到🤗 Transformers 库中。首先,您需要决定管道将能够接受的原始条目。它可以是字符串、原始字节、字典或任何看起来最有可能的期望输入。尽量保持这些输入尽可能纯粹的 Python,因为这样可以使兼容性更容易(甚至通过 JSON 通过其他语言)。这些将是管道的inputspreprocess然后定义。原创 2024-06-23 12:02:01 · 830 阅读 · 0 评论 -
Transformers 4.37 中文文档(十五)
原文:huggingface.co/docs/transformers。原创 2024-06-23 12:01:22 · 1260 阅读 · 0 评论 -
Transformers 4.37 中文文档(十四)
原文:huggingface.co/docs/transformers骨干原文链接:huggingface.co/docs/transformers/v4.37.2/en/main_classes/backbones骨干是用于计算机视觉任务的特征提取模型。可以通过两种方式之一将模型用作骨干:使用预训练模型初始化AutoBackbone类,初始化支持的骨干配置并将其传递给模型架构。使用 AutoBackbone您可以使用AutoBackbone类初始化一个模型作为骨干,并获取原创 2024-06-23 12:00:51 · 956 阅读 · 0 评论 -
Transformers 4.37 中文文档(十三)
原文:huggingface.co/docs/transformers应用程序接口主要类代理和工具原文:huggingface.co/docs/transformers/v4.37.2/en/main_classes/agentTransformers Agents 是一个实验性 API,随时可能发生变化。代理返回的结果可能会有所不同,因为 API 或底层模型可能会发生变化。要了解更多关于代理和工具的信息,请确保阅读入门指南。此页面包含底层类的 API 文档。代理我们提供三种类型的代原创 2024-06-23 12:00:20 · 1171 阅读 · 0 评论 -
Transformers 4.37 中文文档(十七)
原文:huggingface.co/docs/transformers管道原文链接: huggingface.co/docs/transformers/v4.37.2/en/main_classes/pipelines管道是使用模型进行推断的一种很好且简单的方式。这些管道是抽象出库中大部分复杂代码的对象,提供了专门用于多个任务的简单 API,包括命名实体识别、掩码语言建模、情感分析、特征提取和问答。查看任务摘要以获取使用示例。有两种要注意的管道抽象类别:pipeline() 是封装所有原创 2024-06-23 11:59:39 · 847 阅读 · 0 评论 -
Transformers 4.37 中文文档(十六)
原文:huggingface.co/docs/transformers。原创 2024-06-23 11:59:08 · 1134 阅读 · 0 评论 -
Transformers 4.37 中文文档(十九)
原文:huggingface.co/docs/transformers训练器原始文本:huggingface.co/docs/transformers/v4.37.2/en/main_classes/trainerTrainer 类提供了一个用于在 PyTorch 中进行完整特征训练的 API,并支持在多个 GPU/TPU 上进行分布式训练,支持NVIDIA GPUs的混合精度,AMD GPUs,以及 PyTorch 的torch.amp。Trainer 与 TrainingArguments原创 2024-06-23 11:58:38 · 1141 阅读 · 0 评论 -
Transformers 4.37 中文文档(十二)
原文:huggingface.co/docs/transformers🤗 Transformers 能做什么原文链接:huggingface.co/docs/transformers/v4.37.2/en/task_summary🤗 Transformers 是一个预训练的最先进模型库,用于自然语言处理(NLP)、计算机视觉以及音频和语音处理任务。这个库不仅包含了 Transformer 模型,还有像现代卷积网络这样的非 Transformer 模型,用于计算机视觉任务。如果你看一下今天最流行原创 2024-06-23 11:58:07 · 1219 阅读 · 0 评论