
机器学习
文章平均质量分 89
绝不原创的飞龙
这个作者很懒,什么都没留下…
展开
-
ApacheCN 机器学习译文集 20211111 更新
台湾大学林轩田机器学习笔记机器学习基石1 – The Learning Problem2 – Learning to Answer Yes/No3 – Types of Learning4 – Feasibility of Learning5 – Training versus Testing6 – Theory of Generalization7 – The VC Dimension8 – Noise and Error9 – Linear Regression10 – Lo.原创 2021-11-13 18:59:10 · 1281 阅读 · 0 评论 -
机器学习超级复习笔记
原文:Super Machine Learning Revision Notes译者:飞龙协议:CC BY-NC-SA 4.0[最后更新:06/01/2019]本文旨在概述:机器学习中的基本概念(例如,梯度下降,反向传播等)不同的算法和各种流行的模型一些实用技巧和示例是从我自己的实践和一些在线课程(如DeepLearningAI )中学习的。如果您是正在学习机器学习的学生,...翻译 2019-11-01 20:53:43 · 31715 阅读 · 1 评论 -
Scikit-learn 秘籍 第三章 使用距离向量构建模型
第三章 使用距离向量构建模型 作者:Trent Hauck 译者:飞龙 协议:CC BY-NC-SA 4.0这一章中,我们会涉及到聚类。聚类通常和非监督技巧组合到一起。这些技巧假设我们不知道结果变量。这会使结果模糊,以及实践客观。但是,聚类十分有用。我们会看到,我们可以使用聚类,将我们的估计在监督设置中“本地化”。这可能就是聚类非常高效的原因。它可以处理很大范围的情况,通常翻译 2017-05-25 20:55:33 · 40374 阅读 · 0 评论 -
NumPy Cookbook 带注释源码 二、NumPy 高级索引和数组概念
NumPy 高级索引和数组概念调整图像尺寸# 这个代码用于调整图像尺寸# 来源:NumPy Cookbook 2e Ch2.3import scipy.misc import matplotlib.pyplot as plt import numpy as np# 将 Lena 图像加载到数组中lena = scipy.misc.lena()# 图像宽高LENA_X = 512 LENA原创 2017-05-28 14:51:05 · 42075 阅读 · 0 评论 -
NumPy Beginner's Guide 2e 带注释源码 二、NumPy 基础入门
NumPy 基础入门# 来源:NumPy Biginner's Guide 2e ch2>>> from numpy import *多维数组# 创建多维数组>>> m = array([arange(2), arange(2)])>>> marray([[0, 1], [0, 1]])# 打印形状>>> m.shape(2, 2)# 创建 2x2 的矩阵>>> a =原创 2017-05-31 20:34:29 · 48469 阅读 · 0 评论 -
NumPy Beginner's Guide 2e 带注释源码 四、NumPy 便利的函数
NumPy 便利的函数# 来源:NumPy Beginner's Guide 2e ch4交易相关偶对import numpy as npfrom matplotlib.pyplot import plotfrom matplotlib.pyplot import show# 读入 BHP 的收盘价bhp = np.loadtxt('BHP.csv', delimiter=',', useco原创 2017-06-01 10:34:49 · 40751 阅读 · 0 评论 -
NumPy Beginner's Guide 2e 带注释源码 五、处理 NumPy 矩阵和 ufunc
处理 NumPy 矩阵和 ufunc# 来源:NumPy Biginner's Guide 2e ch5创建矩阵import numpy as np# mat 函数创建矩阵# 空格分割行,分号分隔列A = np.mat('1 2 3; 4 5 6; 7 8 9')print "Creation from string", A'''Creation from string [[1 2 3]原创 2017-06-01 14:24:50 · 38622 阅读 · 0 评论 -
NumPy Beginner's Guide 2e 带注释源码 六、深入 NumPy 模块
深入 NumPy 模块# 来源:NumPy Biginner's Guide 2e ch6矩阵的逆import numpy as npA = np.mat("0 1 2;1 0 3;4 -3 8")print "A\n", A'''A[[ 0 1 2] [ 1 0 3] [ 4 -3 8]]'''# 求解矩阵的逆,不可逆会报错inverse = np.linalg.inv(原创 2017-06-01 17:26:23 · 39843 阅读 · 0 评论 -
NumPy Beginner's Guide 2e 带注释源码 七、NumPy 特殊例程
NumPy 特殊例程# 来源:NumPy Biginner's Guide 2e ch7字典排序import numpy as npimport datetime# 日期转成字符串def datestr2num(s): return datetime.datetime.strptime(s, "%d-%m-%Y").toordinal()# 读取 AAPL 的日期和收盘价# 并转换日期原创 2017-06-02 19:09:23 · 40146 阅读 · 0 评论 -
Python 数据科学手册 5.5 朴素贝叶斯分类
5.5 朴素贝叶斯分类 原文:In Depth: Naive Bayes Classification 译者:飞龙 协议:CC BY-NC-SA 4.0 译文没有得到原作者授权,不保证与原文的意思严格一致。前四节对机器学习概念进行了总体概述。 在本节和随后的一节中,我们将仔细研究几种具体的监督和无监督学习算法,从这里以朴素贝叶斯分类开始。朴素贝叶斯模型是一组非常快翻译 2017-06-29 15:09:09 · 39991 阅读 · 0 评论 -
Scikit-learn 秘籍 第四章 使用 scikit-learn 对数据分类
第四章 使用 scikit-learn 对数据分类 作者:Trent Hauck 译者:飞龙 协议:CC BY-NC-SA 4.0分类在大量语境下都非常重要。例如,如果我们打算自动化一些决策过程,我们可以利用分类。在我们需要研究诈骗的情况下,有大量的事务,人去检查它们是不实际的。所以,我们可以使用分类都自动化这种决策。4.1 使用决策树实现基本的分类这个秘籍中,我们使用决策翻译 2017-06-20 17:15:53 · 43405 阅读 · 0 评论 -
Python 数据科学手册 5.1 什么是机器学习
5.1 什么是机器学习 原文:What Is Machine Learning? 译者:飞龙 协议:CC BY-NC-SA 4.0 译文没有得到原作者授权,不保证与原文的意思严格一致。在我们查看机器学习方法的各种细节之前,先了解什么是机器学习,什么不是。机器学习通常被归类为人工智能的一个子领域,但是我发现分类往往会首先产生误导。机器学习的研究肯定来自于这一背景下的翻译 2017-06-30 15:28:55 · 39897 阅读 · 0 评论 -
Python 数据科学手册 5.2 Scikit-Learn 简介
5.2 Scikit-Learn 简介 原文:Introducing Scikit-Learn 译者:飞龙 协议:CC BY-NC-SA 4.0 译文没有得到原作者授权,不保证与原文的意思严格一致。有几个 Python 库提供一系列机器学习算法的实现。最著名的是 Scikit-Learn,一个提供大量常见算法的高效版本的软件包。 Scikit-Learn 的特点是翻译 2017-06-30 21:27:42 · 43823 阅读 · 0 评论 -
Python 数据科学手册 5.6 线性回归
5.6 线性回归 原文:In Depth: Linear Regression 译者:飞龙 协议:CC BY-NC-SA 4.0 译文没有得到原作者授权,不保证与原文的意思严格一致。就像朴素贝叶斯(之前在朴素贝叶斯分类中讨论)是分类任务的一个很好的起点,线性回归模型是回归任务的一个很好的起点。 这些模型受欢迎,因为它们可以快速拟合,并且非常可解释。 你可能熟悉线性翻译 2017-07-02 09:55:26 · 40462 阅读 · 0 评论 -
Scikit-learn 秘籍 第五章 模型后处理
第五章 模型后处理 作者:Trent Hauck 译者:飞龙 协议:CC BY-NC-SA 4.05.1 K-fold 交叉验证这个秘籍中,我们会创建交叉验证,它可能是最重要的模型后处理验证练习。我们会在这个秘籍中讨论 k-fold 交叉验证。有几种交叉验证的种类,每个都有不同的随机化模式。K-fold 可能是一种最熟知的随机化模式。准备我们会创建一些数据集,之后在不同的在翻译 2017-06-22 15:51:23 · 40586 阅读 · 0 评论 -
Scikit-learn 秘籍 翻译完成
Scikit-learn 秘籍 原书:Scikit-learn Cookbook在线阅读PDF格式EPUB格式MOBI格式代码仓库译者 章节 译者 1 预处理 2 回归 3 聚类 4 分类 5 后处理协议CC BY-NC-SA 4.0翻译 2017-06-22 16:14:17 · 40025 阅读 · 0 评论 -
Python 数据科学手册 5.7 支持向量机
5.7 支持向量机支持向量机(SVM)是一种特别强大且灵活的监督算法,用于分类和回归。 在本节中,我们将探索支持向量机背后的直觉,及其在分类问题中的应用。我们以标准导入开始:%matplotlib inlineimport numpy as npimport matplotlib.pyplot as pltfrom scipy import stats# use seaborn plottin翻译 2017-07-02 21:01:55 · 40754 阅读 · 0 评论 -
Python 数据科学手册 5.8 决策树和随机森林
5.8 决策树和随机森林 原文:In-Depth: Decision Trees and Random Forests 译者:飞龙 协议:CC BY-NC-SA 4.0 译文没有得到原作者授权,不保证与原文的意思严格一致。之前,我们深入研究了简单的生成分类器(见朴素贝叶斯分类)和强大的辨别分类器(参见支持向量机)。 这里我们来看看另一个强大的算法的动机 - 一种称翻译 2017-07-03 10:59:52 · 41135 阅读 · 0 评论 -
写给人类的机器学习 四、神经网络和深度学习
四、神经网络和深度学习 原文:Machine Learning for Humans, Part 4: Neural Networks & Deep Learning 作者:Vishal Maini 译者:飞龙 协议:CC BY-NC-SA 4.0 深度神经网络的工作地点、原因和方式。从大脑中获取灵感。卷积神经网络(CNN)和循环神经网络(RNN)。真实世翻译 2017-10-18 22:50:10 · 40637 阅读 · 0 评论 -
写给人类的机器学习 三、无监督学习
三、无监督学习 原文: Machine Learning for Humans, Part 3: Unsupervised Learning 作者:Vishal Maini 译者:机器之心 聚类和降维:K-Means 聚类,层次聚类,主成分分析(PCA),奇异值分解(SVD)。我们可以怎样发现一个数据集的底层结构?我们可以怎样最有用地对其进行归纳和分组?我们转载 2017-10-19 17:11:30 · 42389 阅读 · 3 评论 -
写给人类的机器学习 一、为什么机器学习重要
一、为什么机器学习重要 原文:Machine Learning for Humans 作者:Vishal Maini 译者:飞龙 协议:CC BY-NC-SA 4.0 简单、纯中文的解释,辅以数学、代码和真实世界的示例谁应该阅读它想尽快赶上机器学习潮流的技术人员想要入门机器学习,并愿意了解技术概念的非技术人员好奇机器如何思考的任何人本指南旨在让任翻译 2017-10-20 23:19:59 · 40592 阅读 · 0 评论 -
写给人类的机器学习 六、最好的机器学习资源
六、最好的机器学习资源 原文:The Best Machine Learning Resources 作者:Vishal Maini 译者:飞龙 协议:CC BY-NC-SA 4.0 用于制定人工智能、机器学习和深度学习课程表的资源概览。制定课程表的一般建议上学获得一个正式学位并不总是可行或者令人满意的。对于那些考虑自学来代替的人,这就是写给你们的。1.翻译 2017-10-21 23:32:12 · 39496 阅读 · 0 评论 -
写给人类的机器学习 五、强化学习
五、强化学习 原文:Machine Learning for Humans, Part 5: Reinforcement Learning 作者:Vishal Maini 译者:飞龙 协议:CC BY-NC-SA 4.0 探索和利用。马尔科夫决策过程。Q 学习,策略学习和深度强化学习。 我刚刚吃了一些巧克力来完成最后这部分。在监督学习中,训练数翻译 2017-10-22 22:59:27 · 38919 阅读 · 0 评论 -
写给人类的机器学习 2.1 监督学习
2.1 监督学习 原文:Machine Learning for Humans, Part 2.1: Supervised Learning 作者:Vishal Maini 译者:飞龙 协议:CC BY-NC-SA 4.0 监督学习的两大任务:回归和分类。线性回归,损失函数和梯度下降。通过在数字广告上花费更多的钱,我们能挣多少钱?这个贷款的申请人是否能偿翻译 2017-10-13 23:26:53 · 39897 阅读 · 1 评论 -
写给人类的机器学习 2.2 监督学习 II
2.2 监督学习 II 原文:Machine Learning for Humans, Part 2.1: Supervised Learning 作者:Vishal Maini 译者:飞龙 协议:CC BY-NC-SA 4.0 使用对数几率回归(LR)和支持向量机(SVM)的分类。分类:预测标签这个邮件是不是垃圾邮件?贷款者能否偿还它们的贷款?用户是否翻译 2017-10-14 21:44:38 · 39177 阅读 · 1 评论 -
写给人类的机器学习 翻译完成
写给人类的机器学习原书:Machine Learning for Humans译者:飞龙(等) 这个世界不缺少科学家,缺少能说人话的科学家。在线阅读PDF格式EPUB格式MOBI格式代码仓库赞助我协议CC BY-NC-SA 4.0翻译 2017-10-23 21:48:54 · 38815 阅读 · 0 评论 -
写给人类的机器学习 2.3 监督学习 III
2.3 监督学习 III 原文:Machine Learning for Humans, Part 2.3: Supervised Learning III 作者:Vishal Maini 译者:飞龙 协议:CC BY-NC-SA 4.0 非参数化模型:KNN、决策树和随机森林。包含交叉验证、超参数调优和集成模型。非参数学习器 事情变得有点…奇怪了。翻译 2017-10-17 13:20:40 · 38941 阅读 · 1 评论 -
DeepLearningAI 学习笔记 1.1 深度学习概论
1.1 深度学习概论 视频:第一周 深度学习概论 整理:飞龙什么是神经网络?“深度学习”指的是训练神经网络,有时候规模很大,那么神经网络究竟是什么呢?在这个视频中,我会讲些直观的基础知识。我们从一个房价预测的例子开始。假设有一个六间房屋的数据集,已知房屋的面积,单位是平方英尺或平方米,以及房屋价格。你想要找到一个函数,根据房屋面积来预测房价。https://gitee.com/wiz原创 2017-11-24 22:27:58 · 39995 阅读 · 0 评论 -
DeepLearningAI 学习笔记 1.3 浅层 logistic 神经网络
1.3 浅层 logistic 神经网络 视频:第三周 浅层神经网络 整理:飞龙普通的 logistic 可看做无隐层的神经网络。下面我们做出一个单隐层的神经网络,它本质上是 logistic 套着 logistic,所以也叫作多层 logistic。我们的神经网络有三层,输入层,一个隐层,和输出层。输入层的每个节点对应训练集X的每个特征,节点数量就是特征数量。隐层的节点任意,这张图原创 2017-11-24 22:32:28 · 39044 阅读 · 0 评论 -
Python 数据科学入门教程:机器学习:回归
Python 数据科学入门教程:机器学习:回归 原文:Regression - Intro and Data 译者:飞龙 协议:CC BY-NC-SA 4.0引言和数据欢迎阅读 Python 机器学习系列教程的回归部分。这里,你应该已经安装了 Scikit-Learn。如果没有,安装它,以及 Pandas 和 Matplotlib。pip instal翻译 2017-06-17 15:30:22 · 41544 阅读 · 1 评论 -
Python 数据科学入门教程:TensorFlow 目标检测
TensorFlow 目标检测 原文:TensorFlow Object Detection 译者:飞龙 协议:CC BY-NC-SA 4.0一、引言你好,欢迎阅读 TensorFlow 目标检测 API 迷你系列。 这个 API 可以用于检测图像和/或视频中的对象,带有使用边界框,使用可用的一些预先训练好的模型,或者你自己可以训练的模型(API 也变得更...翻译 2018-02-08 21:54:22 · 47096 阅读 · 4 评论 -
Python 数据科学入门教程:TensorFlow 聊天机器人
TensorFlow 聊天机器人 原文:Creating a Chatbot with Deep Learning, Python, and TensorFlow 译者:飞龙 协议:CC BY-NC-SA 4.0一、使用深度学习创建聊天机器人你好,欢迎阅读 Python 聊天机器人系列教程。 在本系列中,我们将介绍如何使用 Python 和 TensorF...翻译 2018-02-10 22:20:53 · 41355 阅读 · 0 评论 -
斯坦福 CS228 概率图模型中文讲义 五、马尔科夫随机场
欢迎使用Markdown编辑器写博客本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦:Markdown和扩展Markdown简洁的语法代码块高亮图片链接和图片上传LaTex数学公式UML序列图和流程图离线写博客导入导出Markdown文件丰富的快捷键快捷键加粗 Ctrl + B 斜体 Ctrl + I...翻译 2018-03-07 21:59:27 · 39437 阅读 · 1 评论 -
斯坦福 CS228 概率图模型中文讲义 六、变量消除
六、变量消除 原文:Variable elimination 译者:飞龙 协议:CC BY-NC-SA 4.0 自豪地采用谷歌翻译接下来,我们将注意力转向图模型中的推断问题。 给定概率模型(如贝叶斯网络或 MRF),我们有兴趣使用它来回答有用的问题,例如确定给定电子邮件是垃圾邮件的概率。 更正式地说,我们将关注两类问题:边缘推断:在我们总结其他所有东...翻译 2018-03-07 22:00:06 · 42725 阅读 · 2 评论 -
斯坦福 CS228 概率图模型中文讲义 一、引言
一、引言 原文:Introduction 译者:飞龙 协议:CC BY-NC-SA 4.0 自豪地采用谷歌翻译概率图模型是机器学习的一个分支,它研究如何使用概率分布来描述世界,并对其进行有用的预测。了解概率模型有多个理由。 首先,它是一个迷人的科学领域,有着美丽的理论,以惊人的方式将两种截然不同的数学分支联系起来:概率和图论。 概率模型也与哲学有着有...翻译 2018-02-28 22:50:19 · 40196 阅读 · 0 评论 -
斯坦福 CS228 概率图模型中文讲义 二、概率复习
二、概率复习 原文:Probability review 译者:飞龙 协议:CC BY-NC-SA 4.0 自豪地采用谷歌翻译我们在这里复习概率的概念,所有复习材料都来自 CS229 概率讲义。1. 概率的基本元素为了定义集合上的概率,我们需要一些基本元素,样本空间Ω:随机实验所有结果的集合。 在这里,每个结果ω ∈ Ω可以看作实验结束时...翻译 2018-03-01 20:18:10 · 39057 阅读 · 0 评论 -
斯坦福 CS228 概率图模型中文讲义 三、实际应用
三、实际应用 原文:Real-world applications 译者:飞龙 协议:CC BY-NC-SA 4.0 自豪地采用谷歌翻译概率图模型有许多不同的实际应用。 我们总结了概率图形模型的下列应用,这些只是他们许多实际应用的一些例子。图像的概率模型考虑图像(像素矩阵)上的分布P(x),将较高概率分配给看起来真实的图像,将较低概率分配给其...翻译 2018-03-03 10:34:22 · 40030 阅读 · 0 评论 -
斯坦福 CS228 概率图模型中文讲义 四、贝叶斯网络
四、贝叶斯网络 原文:Bayesian networks 译者:飞龙 协议:CC BY-NC-SA 4.0 自豪地采用谷歌翻译我们从表示的话题开始:我们如何选择概率分布来为世界的一些有趣方面建模? 建立一个好的模型并不容易:我们在介绍中看到,垃圾邮件分类的朴素模型需要我们指定一些参数,这些参数对于英文单词数量是指数级的!在本章中,我们将了解避免这类复...翻译 2018-03-03 16:27:40 · 38991 阅读 · 0 评论 -
《Scikit-Learn与TensorFlow机器学习实用指南》 第3章 分类
第3章 分类 来源:ApacheCN《Sklearn 与 TensorFlow 机器学习实用指南》翻译项目 译者:@时间魔术师 校对:@Lisanaaa @飞龙在第一章我们提到过最常用的监督学习任务是回归(用于预测某个值)和分类(预测某个类别)。在第二章我们探索了一个回归任务:预测房价。我们使用了多种算法,诸如线性回归,决策树,和随机森林(这个将会在后面的章节更详...翻译 2018-04-18 14:14:43 · 39456 阅读 · 0 评论 -
《Scikit-Learn与TensorFlow机器学习实用指南》 第1章 机器学习概览
第1章 机器学习概览 来源:ApacheCN《Sklearn 与 TensorFlow 机器学习实用指南》翻译项目 译者:@SeanCheney 校对:@Lisanaaa @飞龙大多数人听到“机器学习”,往往会在脑海中勾勒出一个机器人:一个可靠的管家,或是一个可怕的终结者,这取决于你问的是谁。但是机器学习并不是未来的幻想,它已经来到我们身边了。事实上,一...翻译 2018-04-18 14:50:10 · 40514 阅读 · 1 评论