计算机视觉
文章平均质量分 93
绝不原创的飞龙
这个作者很懒,什么都没留下…
展开
-
Ultralytics 中文文档(四)
FastSAM 的设计旨在解决 Segment Anything Model (SAM) 的局限性,SAM 是一个具有重大计算资源要求的沉重 Transformer 模型。FastSAM 将任意分段任务解耦为两个连续阶段:所有实例分割和提示引导选择。第一阶段使用 YOLOv8-seg 生成图像中所有实例的分割蒙版。在第二阶段,它输出与提示相对应的感兴趣区域。由 Deci AI 开发,YOLO-NAS 是一个开创性的物体检测基础模型。原创 2024-08-08 14:18:14 · 937 阅读 · 0 评论 -
Ultralytics 中文文档(十四)
计算机视觉是人工智能(AI)的一个子领域,帮助计算机像人类一样看见和理解世界。它处理和分析图像或视频,以提取信息、识别模式,并基于这些数据做出决策。如何进行计算机视觉项目 | 一步一步的指南计算机视觉技术,如目标检测、图像分类和实例分割,可以应用于各个行业,从自动驾驶到医学成像,以获得有价值的见解。在自己的计算机视觉项目上工作是理解和学习计算机视觉的好方法。然而,一个计算机视觉项目可能包含许多步骤,起初可能会让人感到困惑。在本指南结束时,你将熟悉计算机视觉项目中涉及的步骤。原创 2024-08-08 14:17:45 · 1440 阅读 · 0 评论 -
Ultralytics 中文文档(十五)
Ultralytics Explorer GUI 是一个强大的界面,使用 Ultralytics Explorer API 解锁高级数据探索功能。它允许您通过大型语言模型(LLMs)驱动的 Ask AI 功能运行语义/向量相似性搜索、SQL 查询和自然语言查询。。在您的数据集上训练自定义 YOLOv5 模型涉及几个关键步骤。首先,按照要求的格式准备数据集,并标注标签。然后,配置 YOLOv5 训练参数,并使用train.py脚本开始训练过程。要深入了解此过程,请查阅我们的训练自定义数据指南。原创 2024-08-08 14:16:22 · 1019 阅读 · 0 评论 -
Ultralytics 中文文档(十二)
超参数调整不仅仅是一次性设置,而是一个迭代过程,旨在优化机器学习模型的性能指标,如准确率、精确率和召回率。在 Ultralytics YOLO 的背景下,这些超参数可以从学习率到架构细节,如层数或激活函数类型。超参数是算法的高级结构设置。它们在训练阶段之前设置,并在其间保持不变。学习率lr0: 确定每次迭代中在损失函数中向最小值移动的步长大小。批处理大小batch: 在前向传递中同时处理的图像数量。训练周期数epochs: 一个周期是所有训练样本的完整前向和后向传递。架构细节。原创 2024-08-08 14:14:47 · 1140 阅读 · 0 评论 -
Ultralytics 中文文档(十三)
NVIDIA 的 DeepStream SDK是基于 GStreamer 的完整流分析工具包,用于基于 AI 的多传感器处理、视频、音频和图像理解。它非常适合视觉 AI 开发人员、软件合作伙伴、初创公司和 OEM 构建 IVA(智能视频分析)应用和服务。您现在可以创建包含神经网络和其他复杂处理任务(如跟踪、视频编码/解码和视频渲染)的流处理管道。这些管道实现了对视频、图像和传感器数据的实时分析。DeepStream 的多平台支持为您在本地、边缘和云端开发视觉 AI 应用和服务提供了更快、更简单的方法。原创 2024-08-08 14:11:00 · 712 阅读 · 0 评论 -
Ultralytics 中文文档(十一)
使用进行队列管理涉及组织和控制人群或车辆队列,以减少等待时间并提高效率。优化队列以提升客户满意度和系统性能,在零售、银行、机场和医疗设施等各种场所发挥作用。如何使用 Ultralytics YOLOv8 实施队列管理 | 机场和地铁站队列管理的优势?队列管理系统有效地组织排队,最大限度地减少顾客等待时间。这导致顾客满意度提高,因为顾客等待时间减少,有更多时间参与产品或服务。实施队列管理允许企业更有效地分配资源。通过分析队列数据和优化员工部署,企业可以简化操作、降低成本,并提高整体生产效率。使用。原创 2024-08-08 14:09:30 · 943 阅读 · 0 评论 -
Ultralytics 中文文档(十)
使用进行对象裁剪涉及从图像或视频中隔离和提取特定检测到的对象。YOLOv8 模型的能力被用来准确识别和描绘对象,实现精确裁剪以供进一步分析或操作。使用 Ultralytics YOLOv8 进行对象裁剪使用进行对象模糊处理涉及对图像或视频中特定检测到的对象应用模糊效果。利用 YOLOv8 模型的能力来识别和操作给定场景中的对象,从而实现此目的。使用 Ultralytics YOLOv8 进行对象模糊使用进行对象模糊涉及自动检测并对图像或视频中的特定对象应用模糊效果。原创 2024-08-08 14:09:01 · 800 阅读 · 0 评论 -
Ultralytics 中文文档(五)
Argoverse 数据集原文:docs.ultralytics.com/datasets/detect/argoverse/Argoverse数据集是由 Argo AI 开发的数据集,旨在支持自动驾驶任务的研究,如 3D 跟踪、运动预测和立体深度估计。该数据集提供多种高质量传感器数据,包括高分辨率图像、LiDAR 点云和地图数据。注意由于福特关闭 Argo AI 后,用于训练的 Argoverse 数据集*.zip文件已从 Amazon S3 中删除,但我们已在Google Drive上提供手原创 2024-08-08 14:07:32 · 1020 阅读 · 0 评论 -
# Ultralytics 中文文档(六)
VisDrone 数据集是中国天津大学 AISKYEYE 团队创建的大规模基准,旨在处理与无人机图像和视频分析相关的各种计算机视觉任务。其主要特点包括:-组成:288 个视频剪辑,261,908 帧和 10,209 张静态图像。注释:超过 260 万个边界框,用于行人、汽车、自行车和三轮车等对象。多样性:收集于 14 个城市,包括城市和农村设置,不同的天气和光照条件。任务:分为五个主要任务 - 图像和视频中的物体检测,单个和多个物体跟踪,以及人群计数。原创 2024-08-08 14:06:59 · 817 阅读 · 0 评论 -
Ultralytics 中文文档(八)
数据集分为三个主要部分:-训练集:包含 1920 张带有注释的图像。测试集:包括 89 张带有相应注释的图像。验证集:包含 188 张带有注释的图像。这种结构确保了一个平衡的数据集,用于彻底的模型训练、验证和测试,提升了分割算法的性能。原文:docs.ultralytics.com/datasets/pose/COCO8-Pose 是一个小型而多用途的姿态检测数据集,由 COCO 训练集 2017 年的前 8 张图像组成,其中 4 张用于训练,4 张用于验证。原创 2024-08-08 14:05:48 · 1058 阅读 · 0 评论 -
Ultralytics 中文文档(五)
Argoverse 数据集原文:docs.ultralytics.com/datasets/detect/argoverse/Argoverse数据集是由 Argo AI 开发的数据集,旨在支持自动驾驶任务的研究,如 3D 跟踪、运动预测和立体深度估计。该数据集提供多种高质量传感器数据,包括高分辨率图像、LiDAR 点云和地图数据。注意由于福特关闭 Argo AI 后,用于训练的 Argoverse 数据集*.zip文件已从 Amazon S3 中删除,但我们已在Google Drive上提供手原创 2024-08-08 14:05:17 · 1154 阅读 · 0 评论 -
Ultralytics 中文文档(二)
训练模型的最终目标是在实际应用中部署它。Ultralytics YOLOv8 的导出模式提供了多种选项,可将训练好的模型导出至不同格式,从而使其能够在各种平台和设备上部署。本详尽指南旨在引导您了解模型导出的细节,展示如何实现最大的兼容性和性能。如何导出自定义训练的 Ultralytics YOLOv8 模型,并在网络摄像头上进行实时推理。视频分析中的多对象跟踪涉及识别对象并在视频帧之间维护每个检测到的对象的唯一 ID。原创 2024-08-08 14:04:48 · 1045 阅读 · 0 评论 -
Ultralytics 中文文档(九)
ImageNette 数据集是较大的ImageNet 数据集的简化子集,仅包含 10 个易于区分的类别,例如 tench、English springer 和 French horn。它旨在为高效的训练和评估图像分类模型提供更可管理的数据集。该数据集特别适用于快速软件开发以及机器学习和计算机视觉的教育目的。是的,您可以使用 Ultralytics HUB 来训练类似 MNIST 这样的自定义数据集。原创 2024-08-08 14:03:26 · 1119 阅读 · 0 评论 -
Ultralytics 中文文档(三)
Ultralytics 支持的模型原文:docs.ultralytics.com/models/欢迎访问 Ultralytics 的模型文档!我们支持多种模型,每个模型都专为特定任务如对象检测、实例分割、图像分类、姿态估计和多对象跟踪而设计。如果您有兴趣将您的模型架构贡献给 Ultralytics,请查阅我们的贡献指南。特色模型这里列出了一些主要支持的模型:YOLOv3: YOLO 模型系列的第三个版本,最初由 Joseph Redmon 开发,以其高效的实时对象检测能力而闻名。YO原创 2024-08-08 14:02:55 · 727 阅读 · 0 评论 -
Ultralytics 中文文档(七)
原文:docs.ultralytics.com/datasets/segment/COCO8-Seg 是一个小型但多功能的实例分割数据集,由 COCO 2017 年度训练集的前 8 张图像组成,其中 4 张用于训练,4 张用于验证。该数据集非常适合用于测试和调试分割模型,或者尝试新的检测方法。8 张图像足够小,易于管理,同时又足够多样化,可以用来检验训练流程中的错误,并在训练更大数据集之前进行健全性检查。此数据集适用于使用 UltralyticsHUB和YOLOv8。Roboflow 裂缝分割数据集。原创 2024-08-08 14:02:23 · 896 阅读 · 0 评论 -
Ultralytics 中文文档(一)
Ultralytics YOLO 是备受赞誉的 YOLO(You Only Look Once)系列的最新进展,用于实时目标检测和图像分割。它通过引入新功能和改进来建立在之前版本的基础上,提升了性能、灵活性和效率。YOLOv8 支持多种视觉 AI 任务,如检测、分割、姿态估计、跟踪和分类。其先进的架构确保了超高的速度和精度,适用于各种应用场景,包括边缘设备和云 API。在您的数据集上训练自定义 YOLO 模型涉及几个详细步骤:准备您的标注数据集。在一个 YAML 文件中配置训练参数。使用。原创 2024-08-08 13:59:33 · 1495 阅读 · 0 评论 -
ApacheCN 计算机视觉译文集 20210218 更新
新增了六个教程:OpenCV3 安卓应用编程零、前言一、设置 OpenCV二、使用相机帧三、应用图像效果四、识别和跟踪图像五、将图像跟踪与 3D 渲染相结合六、通过 JNI 混合 Java 和 C++OpenCV 即时入门一、OpenCV 即时入门Python 机器人学习手册零、前言一、机器人操作系统入门二、了解差动机器人的基础三、建模差动机器人四、使用 ROS 模拟差动机器人五、设计 ChefBot 硬件和电路六、将执行器和传感器连接到机器人控制器七、原创 2021-02-19 08:27:04 · 473 阅读 · 0 评论 -
ApacheCN 计算机视觉译文集 20210212 更新
新增了六个教程:OpenCV 图像处理学习手册零、前言一、处理图像和视频文件二、建立图像处理工具三、校正和增强图像四、处理色彩五、视频图像处理六、计算摄影七、加速图像处理Python3 OpenCV4 计算机视觉学习手册零、前言一、设置 OpenCV二、处理文件,相机和 GUI三、使用 OpenCV 处理图像四、深度估计和分割三、检测和识别人脸六、检索图像并将图像描述符用于搜索七、建立自定义对象检测器八、追踪对象九、相机模型和增强现实十、使用 OpenCV原创 2021-02-12 11:35:04 · 421 阅读 · 0 评论 -
ApacheCN 计算机视觉译文集 20210203 更新
新增了五个教程:OpenCV3 和 Qt5 计算机视觉零、前言一、OpenCV 和 Qt 简介二、创建我们的第一个 Qt 和 OpenCV 项目三、创建一个全面的 Qt + OpenCV 项目四、Mat和QImage五、图形视图框架六、OpenCV 中的图像处理七、特征和描述符八、多线程九、视频分析十、调试与测试十一、链接与部署十二、Qt Quick 应用精通 Python OpenCV4零、前言第 1 部分:OpenCV 4 和 Python 简介一、设置原创 2021-02-03 11:44:20 · 383 阅读 · 0 评论