
默认分类
文章平均质量分 94
绝不原创的飞龙
这个作者很懒,什么都没留下…
展开
-
JavaScript 编程精解(Eloquent)第四版(四)
Node是一个精巧的小系统,使我们能够在非浏览器环境中运行JavaScript。它最初设计用于网络任务,充当网络中的一个节点,但它适用于各种脚本任务。如果编写JavaScript是你喜欢的事情,使用Node自动化任务可能会对你很有帮助。NPM提供了你能想到的所有包(还有一些你可能从未想到的包),并允许你使用npm程序获取和安装这些包。Node内置了一些模块,包括用于处理文件系统的node:fs模块和用于运行HTTP服务器的node:http模块。在Node。原创 2025-03-07 22:21:49 · 1187 阅读 · 0 评论 -
JavaScript 编程精解(Eloquent)第四版(五)
然后可以遍历所有时间戳(遍历日志文件及每个日志文件中的数字),对于每一个,如果它发生在正确的日期,就取出发生的小时,并将对应的数字加一。如果在循环中,你改变放置当前点的圆的半径,并且转圈超过一次,结果就是一个螺旋。然后在起始位置周围的像素正方形上循环,其边长至少为半径的两倍,并对在圆的半径内的像素上色,再次使用勾股公式来计算它们与中心的距离。要进行重试,你可以使用一个仅在调用成功时停止的循环—如本章早些时候的示例,或者使用递归并希望不会出现过长的失败字符串,以至于溢出栈(这通常是相当安全的假设)。原创 2025-03-07 21:09:47 · 1003 阅读 · 0 评论 -
JavaScript 编程精解(Eloquent)第四版(二)
第四章介绍了JavaScript中的对象作为持有其他数据的容器。在编程文化中,是一套以对象为程序组织核心原则的技术。尽管没有人真正同意它的确切定义,面向对象编程已经塑造了许多编程语言的设计,包括JavaScript。本章描述了这些思想如何应用于JavaScript。面向对象编程的主要思想是将对象,或者更确切地说是,作为程序组织的单元。将程序设置为多个严格分离的对象类型提供了一种思考其结构的方式,从而实施某种纪律,防止所有内容交织在一起。这样做的方法是将对象视为电动搅拌机或其他消费电器。设计和组装搅拌机的人需原创 2025-03-07 21:09:14 · 679 阅读 · 0 评论 -
JavaScript 编程精解(Eloquent)第四版(三)
构建自己的编程语言出乎意料地简单(只要你不追求太高的目标),而且非常有启发性。我在这一章中想要展示的主要内容是,构建编程语言并没有什么神秘之处。我常常觉得某些人类发明如此聪明复杂,以至于我永远无法理解它们。但经过一点阅读和实验,它们往往显得相当平凡。我们将构建一种名为的编程语言。它将是一个小而简单的语言——但足够强大,能够表达你能想到的任何计算。它将允许基于函数的简单抽象。编程语言最明显的部分是它的语法或符号。解析器是一个读取文本并生成反映该文本中程序结构的数据结构的程序。如果文本未形成有效的程序,解析器应原创 2025-03-07 21:02:27 · 1067 阅读 · 0 评论 -
JavaScript 编程精解(Eloquent)第四版(一)
这是一本关于指导计算机的书。如今,计算机和螺丝刀一样常见,但它们要复杂得多,让它们按照你的想法运行并不总是容易的。如果你要给计算机的任务是常见且容易理解的,比如查看你的电子邮件或充当计算器,你可以打开相应的应用程序并开始工作。但对于独特或开放式的任务,往往没有合适的应用程序。这就是编程可能发挥作用的地方。是构建一个的行为——一组精确的指令,告诉计算机该做什么。由于计算机是愚蠢的、迂腐的动物,编程在根本上是乏味和令人沮丧的。幸运的是,如果你能克服这一事实——甚至享受以愚蠢机器能够处理的方式进行思考的严谨——编原创 2025-03-07 21:00:05 · 1019 阅读 · 0 评论 -
CMake 最简指南(三)
原文:zh.annas-archive.org/md5/24d02b6780ccd97288f1c67371ea0295。原创 2025-03-03 19:36:59 · 1121 阅读 · 0 评论 -
CMake 最简指南(二)
安装,本质上就是将文件从一个地方复制到另一个地方。一旦这些文件被复制到特定位置,应用程序(或其他库)在构建时就可以在那里查找它们。安装在实践中有几个优点。第一个优点是,你可以构建一次库,只将必要的文件安装到已知位置,然后让多个应用程序使用它。这可以节省大量时间和资源,避免不必要地重复构建相同的代码。另一个优点是,只有所需的文件才会被复制到安装位置。当我们正常构建时,构建文件夹会充满许多中间文件,这些文件应用程序可能不需要(取决于我们的库)。而当我们安装时,我们只会指定必要的文件(通常是构建后的库文件,如。原创 2025-03-03 19:36:27 · 684 阅读 · 0 评论 -
CMake 最简指南(一)
我们非常高兴你决定选择,无论是为了首次了解 CMake,还是为了扩展你今天对 CMake 的理解。如果你有兴趣了解 CMake 如何帮助你创建库和应用程序、与世界级开源软件集成,或者它如何帮助你与他人共享你的创作,那么你来对地方了。本书的标题有些俏皮,但其核心思想是尽可能快地深入了解 CMake 的精髓,跳过一些部分,完全避免其他部分。CMake 最擅长的就是做你需要它做的事,然后给你留出空间。原创 2025-03-03 19:35:55 · 1093 阅读 · 0 评论 -
面向 C++ 的现代 CMake 第二版(五)
当我们需要具体指定诸如缓存变量、选择的生成器等元素时,项目配置可能变得非常复杂,尤其是在有多种方式可以构建项目时。这时预设就显得非常有用。我们可以通过创建一个预设文件,并将所需的配置存储在项目中,避免记住命令行参数或编写 shell 脚本以不同的参数执行cmake。:由项目作者提供的官方预设。:专为希望向项目添加自定义预设的用户设计。项目应将此文件添加到版本控制忽略列表,以确保自定义设置不会无意间共享到仓库中。预设文件必须放在项目的顶级目录中,CMake 才能识别它们。原创 2025-03-03 19:35:21 · 624 阅读 · 0 评论 -
面向 C++ 的现代 CMake 第二版(四)
编写高质量代码并非易事,即便是经验丰富的开发者也是如此。通过在我们的解决方案中加入测试,我们可以减少在主代码中犯基本错误的可能性。但这还不足以避免更复杂的问题。每一段软件都包含了大量的细节,要追踪所有这些细节几乎成为了一项全职工作。维护产品的团队会建立各种约定和特定的设计实践。有一些问题与一致的编码风格有关:我们应该在代码中使用 80 列还是 120 列?我们应该允许使用 还是坚持使用 Lambda 函数?使用 C 风格的数组是否可以接受?小函数是否应该写成一行?我们是否应该总是使用 auto,还是仅在提原创 2025-03-03 19:34:48 · 1075 阅读 · 0 评论 -
面向 C++ 的现代 CMake 第二版(三)
你可能会认为,一旦我们成功地将源代码编译成二进制文件,我们作为构建工程师的角色就完成了。然而,事实并非完全如此。尽管二进制文件确实包含了 CPU 执行所需的所有代码,但这些代码可能会以复杂的方式分布在多个文件中。我们不希望 CPU 在不同的文件中寻找单独的代码片段。相反,我们的目标是将这些分散的单元合并为一个文件。为了实现这一目标,我们使用了一个称为链接的过程。快速观察可以发现,CMake 有很少的链接命令,其中是主要命令。那么,为什么要专门用一整章来讲解这个命令呢?不幸的是,计算机科学几乎没有什么事情是简原创 2025-03-03 19:34:15 · 1045 阅读 · 0 评论 -
面向 C++ 的现代 CMake 第二版(二)
本章深入探讨了如何使用 IDE 来优化编程过程,特别关注那些与 CMake 深度集成的 IDE。它为初学者和经验丰富的专业人士提供了全面的指南,详细说明了使用 IDE 的好处以及如何选择最适合个人或组织需求的 IDE。我们首先讨论了 IDE 在提升开发速度和代码质量中的重要性,解释了什么是 IDE 以及它如何通过整合代码编辑器、编译器和调试器等工具,简化软件开发中的各个步骤。接下来,我们简要提醒了工具链的重要性,解释了如果系统中没有安装工具链则必须进行安装,并列出了最常见的选择。原创 2025-03-03 19:33:43 · 884 阅读 · 0 评论 -
面向 C++ 的现代 CMake 第二版(一)
假设我们通过编写一个脚本来自动化构建,该脚本遍历我们的项目树并编译所有内容。为了避免不必要的编译,脚本将检测自上次运行以来源代码是否已被修改。现在,我们希望有一种方便的方式来管理每个文件传递给编译器的参数——最好是基于可配置的标准来处理。此外,我们的脚本应当知道如何将所有已编译的文件链接成一个单一的二进制文件,或者更好的是,构建可以重用的完整解决方案,并将其作为模块集成到更大的项目中。构建软件是一个非常多样化的过程,涵盖了多个不同的方面:编译可执行文件和库管理依赖关系测试安装打包生成文档。原创 2025-03-03 19:33:07 · 1080 阅读 · 0 评论 -
CMake 最佳实践第二版(四)
在本章中,我们简要讨论了你可以在网上找到的 CMake 社区、贡献 CMake 以及一些很好的阅读和观看推荐。关于 CMake 的材料和演讲数量庞大,内容也在日益增长。时刻关注 CMake 的更新,并定期访问你选择的论坛,保持信息的同步。话虽如此,如果你已经来到这里并阅读这段文字,那么恭喜你!你已经完成了我们在本书中希望涵盖的所有主题。这是最后一章内容。不要忘记将你从本书中学到的知识应用并实践到日常工作流中。我们很享受一起走过的这段旅程,希望你从本书中获得的知识能够为你带来帮助。原创 2025-03-03 19:31:25 · 953 阅读 · 0 评论 -
CMake 最佳实践第二版(三)
本章中,我们学习到 CMake 的主要优势之一是它在使用多种工具链为大量平台构建软件方面的多功能性。其缺点是,有时开发者难以找到适合的软件配置。不过,通过提供 CMake 预设、容器和 sysroots,通常可以更容易地开始 CMake 项目。本章详细讲解了如何定义 CMake 预设来定义工作配置设置,并创建构建和测试定义。然后,我们简要介绍了如何创建 Docker 容器以及如何在容器内调用 CMake 命令,最后简要回顾了 sysroots 和工具链文件。有关工具链和 sysroots 的更多内容将在。原创 2025-03-03 17:59:36 · 838 阅读 · 0 评论 -
CMake 最佳实践第二版(二)
迄今为止,在本书中,我们已经介绍了如何使用CMake构建和安装我们自己的代码。在本章中,我们将探讨如何使用那些不是 CMake 项目一部分的文件、库和程序。本章的第一部分将讲解如何一般性地查找这些内容,而后半部分将专注于如何管理依赖关系,以便构建你的 CMake 项目。使用 CMake 的一个最大优势是,它内置了依赖管理功能,用于发现许多第三方库。在本章中,我们将探讨如何集成已安装在系统上的库和本地下载的依赖项。此外,你还将学习如何将第三方库作为二进制文件下载并使用,或者如何从源代码直接在 CMake 项目原创 2025-03-03 17:59:03 · 710 阅读 · 0 评论 -
CMake 最佳实践第二版(一)
CMake 是开源的,且可在多个平台上使用。它也是与编译器无关的,这使得它在构建和分发跨平台软件时非常强大。所有这些功能使它成为以现代方式构建软件的宝贵工具——即通过依赖构建自动化和内置质量门控。cmake: CMake 本身,用于生成构建指令ctest: CMake 的测试工具,用于检测和运行测试cpack: CMake 的打包工具,用于将软件打包成方便的安装程序,如 DEB、RPM 和自解压安装程序cmake-gui: 一个图形界面前端,帮助配置项目ccmake。原创 2025-03-03 17:58:30 · 958 阅读 · 0 评论 -
面向金融的量子机器学习与优化(三)
原文:zh.annas-archive.org/md5/672c3b00edaf838546b2ff73dc54c7d0。原创 2025-01-21 21:50:19 · 1156 阅读 · 0 评论 -
面向金融的量子机器学习与优化(二)
在构建了量子硬件之后,如何在其规模、连接性和保真度下最大限度地发挥其效用呢?这个问题可以通过将其分为两个部分来更好地回答。首先,哪些问题原则上可以在 NISQ 计算机上求解?其次,如何将经典数据编码为量子态?本书的其余部分集中讨论第一部分:那些可以以不需要大量量子比特的方式进行表述,并且至少在某种程度上具有噪声容忍性的模型和问题。朝着这个方向迈出的第一步是参数化量子电路(PQC)的概念,作为一种通用的量子机器学习模型。第二部分——数据编码——同样重要,并依赖于本章中描述的几种实用方法。这是一个活跃的研究领域原创 2025-01-21 21:49:44 · 2184 阅读 · 0 评论 -
面向金融的量子机器学习与优化(一)
量子机器学习 – 既是最被夸大的领域,也是最被低估的领域。约尔达尼斯·凯雷尼迪斯我们令𝔽表示实数域ℝ或复数域ℂ。对于复数zx+iy∈ℂ,其中x,y∈ℝ,我们写作共轭z^∗ :=x−iy。我们令ℳm,n 表示维度为m×n,元素为𝔽的矩阵空间;当mn时,写作ℳn。对于 A := (aa1≤j≤n] 是其复共轭。如果 A ∈ℳn,我们写 A^⊤ 表示其转置,A^† := (A∗)⊤ 表示其厄米共轭。原创 2025-01-21 21:49:08 · 2068 阅读 · 0 评论 -
Python 量化金融第二版(六)
在本章中,我们集中讨论了几个问题,特别是波动率度量和 ARCH/GARCH 模型。对于波动率度量,首先我们讨论了广泛使用的标准差,它是基于正态性假设的。为了展示这种假设可能不成立,我们介绍了几种正态性检验方法,如 Shapiro-Wilk 检验和 Anderson-Darling 检验。为了展示许多股票的实际分布在基准正态分布下具有厚尾特征,我们生动地使用了各种图形来说明这一点。为了说明波动率可能不是常数,我们展示了用于比较两个时期方差的检验。原创 2025-01-21 21:48:32 · 946 阅读 · 0 评论 -
Python 量化金融第二版(五)
在本章中,我们讨论了几种类型的分布:正态分布、标准正态分布、对数正态分布和泊松分布。由于假设股票遵循对数正态分布且回报遵循正态分布是期权理论的基石,因此蒙特卡洛模拟被用于定价欧式期权。在某些情况下,亚洲期权可能在对冲方面更为有效。奇异期权比标准期权更为复杂,因为前者没有封闭解,而后者可以通过 Black-Scholes-Merton 期权模型定价。定价这些奇异期权的一种方法是使用蒙特卡洛模拟。我们还讨论了定价亚洲期权和回溯期权的 Python 程序。原创 2025-01-21 21:47:57 · 1811 阅读 · 0 评论 -
Python 量化金融第二版(四)
在现代金融中,期权理论(包括期货和远期合约)及其应用发挥着重要作用。许多交易策略、公司激励计划和对冲策略都包含各种类型的期权。例如,许多高管激励计划都基于股票期权。假设一家位于美国的进口商刚刚从英国订购了一台机器,三个月后需支付 1000 万英镑。进口商面临货币风险(或汇率风险)。如果英镑对美元贬值,进口商将受益,因为他/她用更少的美元买入 1000 万英镑。相反,如果英镑对美元升值,那么进口商将遭受损失。进口商可以通过几种方式避免或减少这种风险:立即购买英镑、进入期货市场按今天确定的汇率买入英镑,或者购买原创 2025-01-21 21:47:20 · 1757 阅读 · 0 评论 -
Python 量化金融第二版(三)
在第六章,资本资产定价模型中,我们讨论了最简单的单因子线性模型:CAPM。如前所述,这个单因子线性模型作为更高级和复杂模型的基准。在本章中,我们将重点讨论著名的 Fama-French 三因子模型、Fama-French-Carhart 四因子模型和 Fama-French 五因子模型。理解这些模型后,读者应该能够开发自己的多因子线性模型,例如通过添加国内生产总值(GDP)、消费者价格指数(CPI)、商业周期指标或其他变量作为额外的因子。此外,我们还将讨论绩效衡量标准,如夏普比率、特雷诺比率和詹森阿尔法。具原创 2025-01-21 21:46:42 · 711 阅读 · 0 评论 -
Python 量化金融第二版(二)
在本章中,我们讨论了经济学、金融和会计学的各种公共数据来源。对于经济学,我们可以访问联邦储备银行的数据库、French 教授的数据库,获取许多有用的时间序列数据。对于金融学,我们可以使用 Yahoo!Finance 和 Google Finance 下载历史价格数据。对于会计信息,比如最新几年的资产负债表和利润表,我们可以使用 Yahoo!Finance、Google Finance 和 SEC 的文件。下一章,我们将解释与利率相关的许多概念,之后我们会解释如何定价债券和股票。原创 2025-01-21 21:46:05 · 679 阅读 · 0 评论 -
Python 量化金融第二版(一)
我们坚信,任何一位雄心勃勃的金融专业学生都应该学习至少一门计算机语言。基本原因是我们已经进入了所谓的大数据时代。在金融领域,我们有大量的数据,并且大部分数据是公开的,可以免费获得。为了高效利用这些丰富的数据源,我们需要一个工具。在众多潜在的候选工具中,Python 是最佳选择之一。对于第二版,我们重新组织了本书的结构,增加了更多与金融相关的章节。这是对众多读者反馈的认可和回应。第二版的前两章专门介绍 Python,之后的所有章节都与金融相关。再次强调,本书中的 Python 主要作为工具,帮助读者更好地学习原创 2025-01-21 21:45:28 · 1245 阅读 · 0 评论 -
Python 算法交易秘籍(五)
原文:zh.annas-archive.org/md5/010eca9c9f84c67fe4f8eb1d9bd1d316。原创 2025-01-21 21:44:52 · 1131 阅读 · 0 评论 -
Python 算法交易秘籍(四)
在构建算法交易策略之后,正如我们在上一章中所做的那样,第一步是对给定的策略配置在给定的时间段内进行回测。回测是通过在过去的数据上虚拟执行交易策略并分析其风险和回报指标来评估交易策略性能的方法。这里不使用真实资金。典型的回测指标包括利润和损失(P&L),最大回撤,总交易数,盈利交易数,亏损交易数,多头交易和空头交易,每笔盈利和亏损交易的平均利润等。直到这些指标满足必要要求为止,整个过程应该重复进行,逐步对策略参数和/或策略实施进行更改。如果一个策略在过去的数据上表现良好,那么它在实时数据上也很可能表现良好。同原创 2025-01-21 21:44:17 · 946 阅读 · 0 评论 -
Python 算法交易秘籍(三)
原文:zh.annas-archive.org/md5/010eca9c9f84c67fe4f8eb1d9bd1d316。原创 2025-01-21 21:43:41 · 858 阅读 · 0 评论 -
Python 算法交易秘籍(二)
拥有便捷的金融数据对于进行算法交易至关重要。 金融数据可以是静态的,也可以是动态的。 静态金融数据是在交易时间内不会改变的数据。 静态数据包括金融工具列表、金融工具属性、金融工具的限价和上一个交易日的收盘价格。 动态金融数据是在交易时间内可能持续变化的数据。 动态数据包括市场深度、最后交易价格、金融工具的时间和数量,以及当日的最高和最低价格。 本章包括获取各种类型金融数据的配方。以下是本章的配方列表:获取金融工具列表金融工具的属性金融工具的到期日金融工具的限价金融工具的市场深度金融工具的总待买数量金融工具的原创 2025-01-21 21:43:05 · 971 阅读 · 0 评论 -
Python 算法交易秘籍(一)
Python 是一种非常流行的语言,用于构建和执行算法交易策略。如果您想了解如何使用 Python 构建算法交易的坚实基础,本书可以帮助您。从设置 Python 环境进行交易和与经纪人建立连接开始,您将了解金融市场的重要方面。随着您在这本算法交易书中的进展,您将学会获取金融工具,查询和计算各种类型的蜡烛图和历史数据,最后,计算和绘制技术指标。接下来,您将了解如何下达各种类型的订单,例如普通订单、套利订单和套单,并了解它们的状态转换。您还将揭示从零开始设计和执行强大的算法交易策略时所面临的挑战。后续章节将带您原创 2025-01-21 21:42:27 · 1314 阅读 · 0 评论 -
精通 R 量化金融(三)
在本章中,我们展示了如何利用 R 支持商业银行的资产和负债管理过程。从数据准备到报告的各个任务,R 编程语言都可以提供帮助或解决重复性问题。然而,我们仅简要介绍了如何解决利率和流动性测量问题。我们还提供了一些关于非到期存款利率敏感性统计估计的示例。你可以在以下内容中找到实践知识:从银行投资组合和市场数据生成现金流基本利率风险管理的测量和报告工具基本流动性风险管理的测量和报告工具建模非到期存款的行为我们认为,本章是本书中银行管理话题的有机组成部分。原创 2025-01-21 21:41:48 · 1858 阅读 · 0 评论 -
精通 R 量化金融(二)
利率衍生品是金融衍生品,其支付依赖于利率。这种产品种类繁多,基本类型包括利率掉期、远期利率协议、可赎回和可出售债券、债券期权、上限和下限等。在本章中,我们将从黑模型(也称为 Black-76 模型)开始,它是 Black-Scholes 模型的推广版本,通常用于定价利率衍生品。接下来,我们将展示如何应用黑模型来定价利率上限。黑模型的一个缺点是它假设某些标的资产(例如债券价格或利率)服从对数正态分布,并忽略了利率随时间变化的情况。因此,Black 的公式不能用于所有种类的利率衍生品。有时,有必要建模利率模型的原创 2025-01-21 21:41:11 · 1504 阅读 · 0 评论 -
精通 R 量化金融(一)
精通 R 语言量化金融是我们之前出版的《量化金融 R 语言入门》的续集,旨在帮助那些希望在量化金融领域更高阶使用 R 语言构建模型的人学习。本书将涵盖新的实证金融学主题(第 1-4 章)、金融工程学(第 5-7 章)、交易策略优化(第 8-10 章)以及银行管理(第 11-13 章)。第一章,时间序列分析(Tamás Vadász)讨论了一些重要概念,如协整(结构性)、向量自回归模型、脉冲响应函数、使用不对称 GARCH 模型的波动率建模以及新闻冲击曲线。第二章,因子模型。原创 2025-01-21 21:40:35 · 1015 阅读 · 0 评论 -
精通 Python 金融第二版(四)
深度学习的理论早在 20 世纪 40 年代就开始了。然而,由于计算硬件技术的改进、更智能的算法和深度学习框架的采用,它近年来的流行度飙升。这本书之外还有很多内容要涵盖。本节作为一个快速指南,旨在为后面本章将涵盖的示例提供一个工作知识。在第十章中,金融领域的机器学习,我们了解了机器学习如何用于进行预测。监督学习使用误差最小化技术来拟合训练数据的模型,可以是基于回归或分类的。深度学习通过使用神经网络来进行预测采用了一种不同的方法。原创 2025-01-21 21:40:00 · 1007 阅读 · 0 评论 -
精通 Python 金融第二版(三)
算法交易自动化系统交易流程,根据定价、时机和成交量等多种因素以尽可能最佳价格执行订单。经纪公司可能会为希望部署自己交易算法的客户提供应用程序编程接口(API)作为其服务提供的一部分。算法交易系统必须非常健壮,以处理订单执行过程中的任何故障点。网络配置、硬件、内存管理、速度和用户体验是设计执行订单系统时需要考虑的一些因素。设计更大的系统不可避免地会给框架增加更多复杂性。一旦在市场上开立头寸,就会面临各种风险,如市场风险、利率风险和流动性风险。为了尽可能保护交易资本,将风险管理措施纳入交易系统非常重要。金融行业原创 2025-01-21 21:39:25 · 1664 阅读 · 0 评论 -
精通 Python 金融第二版(二)
在本章中,我们专注于使用 Python 进行利率和相关衍生品定价。大多数债券,如美国国债,每半年支付固定利息,而其他债券可能每季度或每年支付。债券的一个特点是它们的价格与当前利率水平密切相关,但是呈现出相反的关系。正常或正斜率的收益曲线,即长期利率高于短期利率,被称为向上倾斜。在某些经济条件下,收益曲线可能会倒挂,被称为向下倾斜。零息债券是一种在其存续期内不支付利息的债券,只有在到期时偿还本金或面值时才支付。我们用 Python 实现了一个简单的零息债券计算器。原创 2025-01-21 21:38:48 · 966 阅读 · 0 评论 -
精通 Python 金融第二版(一)
本书的第二版Mastering Python for Finance将指导您使用下一代方法在金融行业中进行复杂的金融计算。您将通过利用公开可用的工具来掌握 Python 生态系统,成功进行研究和建模,并学习如何使用高级示例来管理风险。您将首先设置一个 Jupyter 笔记本,以实现本书中的任务。您将学习如何使用流行的库(如 TensorFlow、Keras、NumPy、SciPy、scikit-learn 等)做出高效而强大的数据驱动金融决策。您还将学习如何通过掌握股票、期权、利率及其衍生品以及使用计算方法原创 2025-01-21 21:38:11 · 2511 阅读 · 0 评论 -
面向金融的机器学习(四)
在本章中,你学到了许多调试和改进模型的实用技巧。让我们回顾一下我们所学到的所有内容:找出数据中的缺陷,导致你的学习模型出现缺陷使用创造性技巧让你的模型从更少的数据中学到更多在生产环境或训练中进行单元测试,以确保满足标准注意隐私问题准备训练数据并避免常见陷阱检查模型并窥探“黑箱”寻找最佳超参数调整学习率,以减少过拟合使用 TensorBoard 监控训练进度部署机器学习产品并对其进行迭代加速训练和推理。原创 2025-01-21 21:37:34 · 932 阅读 · 0 评论 -
面向金融的机器学习(三)
生成模型生成新的数据。从某种意义上说,它们与我们在前几章中处理的模型完全相反。图像分类器接受高维度的输入——图像,并输出低维度的输出,例如图像的内容,而生成模型的处理方式正好相反。它可能会根据图像的描述来绘制图像。生成模型仍处于开发的实验阶段,目前主要用于图像应用。然而,它们是一个重要的模型,正如已经有多个应用使用生成模型并在行业内引起轩然大波这一事实所显示的那样。2017 年,所谓的DeepFakes开始在互联网上出现。生成对抗网络(GANs),我们将在本章稍后讨论的技术,被用来生成包含著名名人的色情视频原创 2025-01-21 21:36:58 · 2005 阅读 · 0 评论