默认分类
文章平均质量分 94
绝不原创的飞龙
这个作者很懒,什么都没留下…
展开
-
面向金融的量子机器学习与优化(三)
原文:zh.annas-archive.org/md5/672c3b00edaf838546b2ff73dc54c7d0。原创 2025-01-21 21:50:19 · 855 阅读 · 0 评论 -
面向金融的量子机器学习与优化(二)
在构建了量子硬件之后,如何在其规模、连接性和保真度下最大限度地发挥其效用呢?这个问题可以通过将其分为两个部分来更好地回答。首先,哪些问题原则上可以在 NISQ 计算机上求解?其次,如何将经典数据编码为量子态?本书的其余部分集中讨论第一部分:那些可以以不需要大量量子比特的方式进行表述,并且至少在某种程度上具有噪声容忍性的模型和问题。朝着这个方向迈出的第一步是参数化量子电路(PQC)的概念,作为一种通用的量子机器学习模型。第二部分——数据编码——同样重要,并依赖于本章中描述的几种实用方法。这是一个活跃的研究领域原创 2025-01-21 21:49:44 · 839 阅读 · 0 评论 -
面向金融的量子机器学习与优化(一)
量子机器学习 – 既是最被夸大的领域,也是最被低估的领域。约尔达尼斯·凯雷尼迪斯我们令𝔽表示实数域ℝ或复数域ℂ。对于复数zx+iy∈ℂ,其中x,y∈ℝ,我们写作共轭z^∗ :=x−iy。我们令ℳm,n 表示维度为m×n,元素为𝔽的矩阵空间;当mn时,写作ℳn。对于 A := (aa1≤j≤n] 是其复共轭。如果 A ∈ℳn,我们写 A^⊤ 表示其转置,A^† := (A∗)⊤ 表示其厄米共轭。原创 2025-01-21 21:49:08 · 1161 阅读 · 0 评论 -
Python 量化金融第二版(六)
在本章中,我们集中讨论了几个问题,特别是波动率度量和 ARCH/GARCH 模型。对于波动率度量,首先我们讨论了广泛使用的标准差,它是基于正态性假设的。为了展示这种假设可能不成立,我们介绍了几种正态性检验方法,如 Shapiro-Wilk 检验和 Anderson-Darling 检验。为了展示许多股票的实际分布在基准正态分布下具有厚尾特征,我们生动地使用了各种图形来说明这一点。为了说明波动率可能不是常数,我们展示了用于比较两个时期方差的检验。原创 2025-01-21 21:48:32 · 685 阅读 · 0 评论 -
Python 量化金融第二版(五)
在本章中,我们讨论了几种类型的分布:正态分布、标准正态分布、对数正态分布和泊松分布。由于假设股票遵循对数正态分布且回报遵循正态分布是期权理论的基石,因此蒙特卡洛模拟被用于定价欧式期权。在某些情况下,亚洲期权可能在对冲方面更为有效。奇异期权比标准期权更为复杂,因为前者没有封闭解,而后者可以通过 Black-Scholes-Merton 期权模型定价。定价这些奇异期权的一种方法是使用蒙特卡洛模拟。我们还讨论了定价亚洲期权和回溯期权的 Python 程序。原创 2025-01-21 21:47:57 · 889 阅读 · 0 评论 -
Python 量化金融第二版(四)
在现代金融中,期权理论(包括期货和远期合约)及其应用发挥着重要作用。许多交易策略、公司激励计划和对冲策略都包含各种类型的期权。例如,许多高管激励计划都基于股票期权。假设一家位于美国的进口商刚刚从英国订购了一台机器,三个月后需支付 1000 万英镑。进口商面临货币风险(或汇率风险)。如果英镑对美元贬值,进口商将受益,因为他/她用更少的美元买入 1000 万英镑。相反,如果英镑对美元升值,那么进口商将遭受损失。进口商可以通过几种方式避免或减少这种风险:立即购买英镑、进入期货市场按今天确定的汇率买入英镑,或者购买原创 2025-01-21 21:47:20 · 1003 阅读 · 0 评论 -
Python 量化金融第二版(三)
在第六章,资本资产定价模型中,我们讨论了最简单的单因子线性模型:CAPM。如前所述,这个单因子线性模型作为更高级和复杂模型的基准。在本章中,我们将重点讨论著名的 Fama-French 三因子模型、Fama-French-Carhart 四因子模型和 Fama-French 五因子模型。理解这些模型后,读者应该能够开发自己的多因子线性模型,例如通过添加国内生产总值(GDP)、消费者价格指数(CPI)、商业周期指标或其他变量作为额外的因子。此外,我们还将讨论绩效衡量标准,如夏普比率、特雷诺比率和詹森阿尔法。具原创 2025-01-21 21:46:42 · 554 阅读 · 0 评论 -
Python 量化金融第二版(二)
在本章中,我们讨论了经济学、金融和会计学的各种公共数据来源。对于经济学,我们可以访问联邦储备银行的数据库、French 教授的数据库,获取许多有用的时间序列数据。对于金融学,我们可以使用 Yahoo!Finance 和 Google Finance 下载历史价格数据。对于会计信息,比如最新几年的资产负债表和利润表,我们可以使用 Yahoo!Finance、Google Finance 和 SEC 的文件。下一章,我们将解释与利率相关的许多概念,之后我们会解释如何定价债券和股票。原创 2025-01-21 21:46:05 · 536 阅读 · 0 评论 -
Python 量化金融第二版(一)
我们坚信,任何一位雄心勃勃的金融专业学生都应该学习至少一门计算机语言。基本原因是我们已经进入了所谓的大数据时代。在金融领域,我们有大量的数据,并且大部分数据是公开的,可以免费获得。为了高效利用这些丰富的数据源,我们需要一个工具。在众多潜在的候选工具中,Python 是最佳选择之一。对于第二版,我们重新组织了本书的结构,增加了更多与金融相关的章节。这是对众多读者反馈的认可和回应。第二版的前两章专门介绍 Python,之后的所有章节都与金融相关。再次强调,本书中的 Python 主要作为工具,帮助读者更好地学习原创 2025-01-21 21:45:28 · 760 阅读 · 0 评论 -
Python 算法交易秘籍(五)
原文:zh.annas-archive.org/md5/010eca9c9f84c67fe4f8eb1d9bd1d316。原创 2025-01-21 21:44:52 · 965 阅读 · 0 评论 -
Python 算法交易秘籍(四)
在构建算法交易策略之后,正如我们在上一章中所做的那样,第一步是对给定的策略配置在给定的时间段内进行回测。回测是通过在过去的数据上虚拟执行交易策略并分析其风险和回报指标来评估交易策略性能的方法。这里不使用真实资金。典型的回测指标包括利润和损失(P&L),最大回撤,总交易数,盈利交易数,亏损交易数,多头交易和空头交易,每笔盈利和亏损交易的平均利润等。直到这些指标满足必要要求为止,整个过程应该重复进行,逐步对策略参数和/或策略实施进行更改。如果一个策略在过去的数据上表现良好,那么它在实时数据上也很可能表现良好。同原创 2025-01-21 21:44:17 · 840 阅读 · 0 评论 -
Python 算法交易秘籍(三)
原文:zh.annas-archive.org/md5/010eca9c9f84c67fe4f8eb1d9bd1d316。原创 2025-01-21 21:43:41 · 733 阅读 · 0 评论 -
Python 算法交易秘籍(二)
拥有便捷的金融数据对于进行算法交易至关重要。 金融数据可以是静态的,也可以是动态的。 静态金融数据是在交易时间内不会改变的数据。 静态数据包括金融工具列表、金融工具属性、金融工具的限价和上一个交易日的收盘价格。 动态金融数据是在交易时间内可能持续变化的数据。 动态数据包括市场深度、最后交易价格、金融工具的时间和数量,以及当日的最高和最低价格。 本章包括获取各种类型金融数据的配方。以下是本章的配方列表:获取金融工具列表金融工具的属性金融工具的到期日金融工具的限价金融工具的市场深度金融工具的总待买数量金融工具的原创 2025-01-21 21:43:05 · 864 阅读 · 0 评论 -
Python 算法交易秘籍(一)
Python 是一种非常流行的语言,用于构建和执行算法交易策略。如果您想了解如何使用 Python 构建算法交易的坚实基础,本书可以帮助您。从设置 Python 环境进行交易和与经纪人建立连接开始,您将了解金融市场的重要方面。随着您在这本算法交易书中的进展,您将学会获取金融工具,查询和计算各种类型的蜡烛图和历史数据,最后,计算和绘制技术指标。接下来,您将了解如何下达各种类型的订单,例如普通订单、套利订单和套单,并了解它们的状态转换。您还将揭示从零开始设计和执行强大的算法交易策略时所面临的挑战。后续章节将带您原创 2025-01-21 21:42:27 · 1041 阅读 · 0 评论 -
精通 R 量化金融(三)
在本章中,我们展示了如何利用 R 支持商业银行的资产和负债管理过程。从数据准备到报告的各个任务,R 编程语言都可以提供帮助或解决重复性问题。然而,我们仅简要介绍了如何解决利率和流动性测量问题。我们还提供了一些关于非到期存款利率敏感性统计估计的示例。你可以在以下内容中找到实践知识:从银行投资组合和市场数据生成现金流基本利率风险管理的测量和报告工具基本流动性风险管理的测量和报告工具建模非到期存款的行为我们认为,本章是本书中银行管理话题的有机组成部分。原创 2025-01-21 21:41:48 · 1114 阅读 · 0 评论 -
精通 R 量化金融(二)
利率衍生品是金融衍生品,其支付依赖于利率。这种产品种类繁多,基本类型包括利率掉期、远期利率协议、可赎回和可出售债券、债券期权、上限和下限等。在本章中,我们将从黑模型(也称为 Black-76 模型)开始,它是 Black-Scholes 模型的推广版本,通常用于定价利率衍生品。接下来,我们将展示如何应用黑模型来定价利率上限。黑模型的一个缺点是它假设某些标的资产(例如债券价格或利率)服从对数正态分布,并忽略了利率随时间变化的情况。因此,Black 的公式不能用于所有种类的利率衍生品。有时,有必要建模利率模型的原创 2025-01-21 21:41:11 · 861 阅读 · 0 评论 -
精通 R 量化金融(一)
精通 R 语言量化金融是我们之前出版的《量化金融 R 语言入门》的续集,旨在帮助那些希望在量化金融领域更高阶使用 R 语言构建模型的人学习。本书将涵盖新的实证金融学主题(第 1-4 章)、金融工程学(第 5-7 章)、交易策略优化(第 8-10 章)以及银行管理(第 11-13 章)。第一章,时间序列分析(Tamás Vadász)讨论了一些重要概念,如协整(结构性)、向量自回归模型、脉冲响应函数、使用不对称 GARCH 模型的波动率建模以及新闻冲击曲线。第二章,因子模型。原创 2025-01-21 21:40:35 · 851 阅读 · 0 评论 -
精通 Python 金融第二版(四)
深度学习的理论早在 20 世纪 40 年代就开始了。然而,由于计算硬件技术的改进、更智能的算法和深度学习框架的采用,它近年来的流行度飙升。这本书之外还有很多内容要涵盖。本节作为一个快速指南,旨在为后面本章将涵盖的示例提供一个工作知识。在第十章中,金融领域的机器学习,我们了解了机器学习如何用于进行预测。监督学习使用误差最小化技术来拟合训练数据的模型,可以是基于回归或分类的。深度学习通过使用神经网络来进行预测采用了一种不同的方法。原创 2025-01-21 21:40:00 · 926 阅读 · 0 评论 -
精通 Python 金融第二版(三)
算法交易自动化系统交易流程,根据定价、时机和成交量等多种因素以尽可能最佳价格执行订单。经纪公司可能会为希望部署自己交易算法的客户提供应用程序编程接口(API)作为其服务提供的一部分。算法交易系统必须非常健壮,以处理订单执行过程中的任何故障点。网络配置、硬件、内存管理、速度和用户体验是设计执行订单系统时需要考虑的一些因素。设计更大的系统不可避免地会给框架增加更多复杂性。一旦在市场上开立头寸,就会面临各种风险,如市场风险、利率风险和流动性风险。为了尽可能保护交易资本,将风险管理措施纳入交易系统非常重要。金融行业原创 2025-01-21 21:39:25 · 974 阅读 · 0 评论 -
精通 Python 金融第二版(二)
在本章中,我们专注于使用 Python 进行利率和相关衍生品定价。大多数债券,如美国国债,每半年支付固定利息,而其他债券可能每季度或每年支付。债券的一个特点是它们的价格与当前利率水平密切相关,但是呈现出相反的关系。正常或正斜率的收益曲线,即长期利率高于短期利率,被称为向上倾斜。在某些经济条件下,收益曲线可能会倒挂,被称为向下倾斜。零息债券是一种在其存续期内不支付利息的债券,只有在到期时偿还本金或面值时才支付。我们用 Python 实现了一个简单的零息债券计算器。原创 2025-01-21 21:38:48 · 777 阅读 · 0 评论 -
精通 Python 金融第二版(一)
本书的第二版Mastering Python for Finance将指导您使用下一代方法在金融行业中进行复杂的金融计算。您将通过利用公开可用的工具来掌握 Python 生态系统,成功进行研究和建模,并学习如何使用高级示例来管理风险。您将首先设置一个 Jupyter 笔记本,以实现本书中的任务。您将学习如何使用流行的库(如 TensorFlow、Keras、NumPy、SciPy、scikit-learn 等)做出高效而强大的数据驱动金融决策。您还将学习如何通过掌握股票、期权、利率及其衍生品以及使用计算方法原创 2025-01-21 21:38:11 · 1138 阅读 · 0 评论 -
面向金融的机器学习(四)
在本章中,你学到了许多调试和改进模型的实用技巧。让我们回顾一下我们所学到的所有内容:找出数据中的缺陷,导致你的学习模型出现缺陷使用创造性技巧让你的模型从更少的数据中学到更多在生产环境或训练中进行单元测试,以确保满足标准注意隐私问题准备训练数据并避免常见陷阱检查模型并窥探“黑箱”寻找最佳超参数调整学习率,以减少过拟合使用 TensorBoard 监控训练进度部署机器学习产品并对其进行迭代加速训练和推理。原创 2025-01-21 21:37:34 · 887 阅读 · 0 评论 -
面向金融的机器学习(三)
生成模型生成新的数据。从某种意义上说,它们与我们在前几章中处理的模型完全相反。图像分类器接受高维度的输入——图像,并输出低维度的输出,例如图像的内容,而生成模型的处理方式正好相反。它可能会根据图像的描述来绘制图像。生成模型仍处于开发的实验阶段,目前主要用于图像应用。然而,它们是一个重要的模型,正如已经有多个应用使用生成模型并在行业内引起轩然大波这一事实所显示的那样。2017 年,所谓的DeepFakes开始在互联网上出现。生成对抗网络(GANs),我们将在本章稍后讨论的技术,被用来生成包含著名名人的色情视频原创 2025-01-21 21:36:58 · 842 阅读 · 0 评论 -
面向金融的机器学习(二)
在本章中,你学习了处理时间序列数据的广泛传统工具。你还了解了一维卷积和递归架构,最后,你学到了一个简单的方法,使得模型能够表达不确定性。时间序列是金融数据中最具代表性的形式。本章为你提供了处理时间序列的丰富工具箱。让我们通过预测维基百科的网页流量来回顾一下我们已经涵盖的内容:基本数据探索,以理解我们所处理的数据傅里叶变换和自相关作为特征工程和数据理解的工具使用简单的中位数预测作为基准和理性检查理解并使用 ARIMA 和卡尔曼滤波器作为经典的预测模型设计特征,包括为所有时间序列构建数据加载机制。原创 2025-01-21 21:36:22 · 954 阅读 · 0 评论 -
面向金融的机器学习(一)
在大量数据计算资源的支持下,机器学习(ML)取得了重大进展。金融行业作为一个以信息处理为核心的企业,蕴藏着大量应用这些新技术的机会。本书是一本现代机器学习在金融行业应用的实用指南。采用代码优先的方法,它将教你最有用的机器学习算法是如何工作的,以及如何利用它们解决现实世界的问题。有三类人群将从本书中受益最大:希望进入金融行业并了解可能的应用范围和相关问题的数据科学家希望提升技能并将高级机器学习方法应用于建模过程的任何金融科技公司开发人员或量化金融专业人士希望为进入劳动力市场做好准备并学习一些雇主重视的实用技能原创 2025-01-21 21:35:44 · 558 阅读 · 0 评论 -
机器学习算法交易教程第二版(七)
生成器损失反映了鉴别器对假输入的决定。如果鉴别器误将生成器生成的图像误认为是真实图像,则生成器损失会很低;反之,则会很高;在创建训练步骤时,我们将定义这两个模型之间的交互。鉴别器接收真实图像和假图像作为输入。在本章中,我们介绍了 GAN,它们学习输入数据上的概率分布,因此能够生成代表目标数据的合成样本。虽然这个非常新的创新有许多实际应用,但如果在医学领域生成时间序列训练数据的成功能够转移到金融市场数据上,那么它们可能对算法交易特别有价值。我们学习了如何使用 TensorFlow 设置对抗性训练。原创 2025-01-21 21:35:06 · 909 阅读 · 0 评论 -
机器学习算法交易教程第二版(六)
)我们使用我们需要将 AlexNet 架构调整到与竞赛中使用的 ImageNet 样本相比,CIFAR-10 图像的较低维度上。为此,我们保持原始滤波器的数量,但将它们变小(有关实施细节,请参见笔记本)。摘要(见笔记本)显示了五个卷积层,后跟两个频繁使用批量标准化的全连接层,共计 2150 万参数。笔记本说明了如何应用迁移学习到基于 VGG16 架构的深度 CNN,如前一节所述。原创 2025-01-21 21:34:23 · 1059 阅读 · 0 评论 -
机器学习算法交易教程第二版(五)
这是专门从文本数据中提取用于算法交易策略的信号的三章之一,使用自然语言处理(NLP)和机器学习(ML)。文本数据在内容上非常丰富,但结构非常不规则,因此需要更多的预处理以使 ML 算法能够提取相关信息。一个关键挑战是将文本转换为数字格式而不丢失其含义。我们将介绍几种能够捕捉语言细微差别的技术,以便它们可以用作 ML 算法的输入。在本章中,我们将介绍基本的特征提取技术,重点放在个别语义单元上,即单词或称为令牌的短组合。我们将展示如何将文档表示为令牌计数的向量,方法是创建一个文档-术语矩阵,然后继续将其用作新闻原创 2025-01-21 21:33:45 · 737 阅读 · 0 评论 -
机器学习算法交易教程第二版(四)
如第六章机器学习流程中所强调的,scikit-learn 提供了一种定义多个超参数值范围的方法。它自动化了交叉验证各种参数值组合的过程,以确定最佳配置。让我们逐步了解自动调整模型的过程。然后,实例化对象,提供估算器对象和参数网格,以及评分方法和交叉验证选择,传递给初始化方法。我们将自定义的我们使用roc_auc指标对分类器进行评分,并使用 scikit-learn 的我们可以使用n_jobs参数并通过设置refit=True自动获取使用最佳超参数的训练模型。原创 2025-01-21 21:33:09 · 913 阅读 · 0 评论 -
机器学习算法交易教程第二版(三)
现在,是时候整合我们迄今为止分开讨论的机器学习交易(ML4T)工作流的各种构建模块了。本章的目标是呈现设计、模拟和评估由 ML 算法驱动的交易策略过程的端到端视角。为此,我们将更详细地演示如何使用 Python 库 backtrader 和 Zipline 在历史市场环境中回测 ML 驱动的策略。ML4T 工作流的终极目标是从历史数据中收集证据。这有助于我们决定是否在实时市场部署候选策略并将财务资源置于风险之中。此过程建立在您在前几章中培养的技能基础上,因为它依赖于您的能力来:使用各种数据源来工程化信息丰富原创 2025-01-21 21:32:34 · 633 阅读 · 0 评论 -
机器学习算法交易教程第二版(二)
Pyfolio 提供了几个分析函数和图表。perf_stats摘要显示了年度和累积回报、波动率、偏度和峰度以及 SR。最大回撤:相对于前一峰值的最大百分比损失卡尔玛比率:年度组合回报与最大回撤的相对值欧米伽比率:对于回报目标的基于概率加权的增益与损失比率,默认为零索蒂诺比率:相对于下行标准差的超额回报尾部比率:右尾部的大小(增益,第 95 百分位的绝对值)相对于左尾部的大小(损失,第 5 百分位的绝对值)每日风险价值(VaR):对应于每日均值下两个标准偏差的损失阿尔法:未被基准回报解释的投资组合回报贝塔。原创 2025-01-21 21:31:59 · 589 阅读 · 0 评论 -
机器学习算法交易教程第二版(一)
如果你正在阅读这篇文章,你可能已经意识到机器学习(ML)已经成为许多行业的战略能力,包括投资行业。与 ML 的兴起密切相关的数字数据的爆炸对投资产生了特别强大的影响,而投资已经有了使用复杂模型处理信息的悠久历史。这些趋势正在促成量化投资的新方法,并增加了将数据科学应用于自主和算法交易策略的需求。跨资产类别的交易范围非常广泛,因为它涵盖了从股票和政府债券到商品和房地产的范围。这意味着一个非常广泛的新型替代数据源可能与过去大多数分析工作的核心市场和基本数据相关。你可能也已经了解到,成功应用 ML 或数据科学需要原创 2025-01-21 21:31:24 · 1102 阅读 · 0 评论 -
R 量化金融学习指南(三)
在本章中,我们介绍了金融机构面临的各种风险类型,如市场风险、投资组合风险、VaR、蒙特卡洛模拟、对冲、巴塞尔协议、信用风险和欺诈检测。我们还讨论了如何利用 R 的优势来衡量不同类型的风险。在本章中,我们展示了如何使用 R 衡量市场、投资组合和信用风险,并展示了如何使用随机森林分类技术进行欺诈检测。在下一章中,我们将介绍在交易算法和参数估计中使用的各种优化技术。将涵盖的优化技术包括动态再平衡、前向步进测试、网格测试和遗传算法。在本章中,我们讨论了交易算法和参数估计中使用的各种优化技术。原创 2025-01-21 21:30:49 · 823 阅读 · 0 评论 -
R 量化金融学习指南(二)
时间序列预测分析是量化金融中最重要的组成部分之一。R 软件提供了许多时间序列和预测包来支持时间序列分析。R 中有足够的包可以将等距和不等距的系列转换为时间序列。此外,R 中还有足够的包可以构建预测模型,如自回归积分滑动平均(ARIMA)和广义自回归条件异方差(EGARCH)。在本章中,我们将简要介绍如何将任何系列转换为时间序列并构建预测模型。在本章中,我们将涵盖以下主题:一般时间序列将数据转换为时间序列zooxts线性滤波器ARMAARIMAGARCHEGARCHVGARCH动态条件相关性时间序列是通常在固原创 2025-01-21 21:30:16 · 889 阅读 · 0 评论 -
R 量化金融学习指南(一)
用 R 学习量化金融解释了量化金融在统计语言 R 中的实际应用示例。本书的写作目的是将知识传递给那些有兴趣用 R 学习量化金融的人。在本书中,我们涵盖了从基础到高级的各种主题。特别是,我们介绍了统计学、时间序列和小波分析,以及它们在算法交易中的应用。我们还尽力解释了本书中机器学习、风险管理、优化和期权定价的一些应用。本章将讨论 R 的基本概念。这将为后续章节提供背景知识。我们不会对 R 中的每个概念进行详细讨论。原创 2025-01-21 21:29:41 · 560 阅读 · 0 评论 -
R 量化金融入门指南(二)
本章简要介绍了与信用风险建模相关的一些最常见方法。然而,处理违约风险的工业方法有很多。先进方法的基础通常是一些结构性和基于强度的方法。Copula 模型在建模信用组合风险方面仍然非常流行,特别是在结构化信用衍生品定价中。R 语言中有强大且全面的 copula 建模包。建模降级风险的第一步是了解管理迁移矩阵和 CreditMetrics 方法的原理。最后,我们简要概述了 R 中信用评分的可能性。设随机变量X表示我们希望建模的随机损失,其分布函数为。对于给定的阈值u,超过该阈值的损失。原创 2025-01-21 21:29:07 · 943 阅读 · 0 评论 -
R 量化金融入门指南(一)
量化金融中的 R 入门 将展示如何使用统计计算语言 R 和 QF 来解决实际的量化金融问题。本书将涉及从时间序列分析到金融网络的各类话题。每一章将简要介绍相关理论,并通过 R 来解决特定问题。第一章,时间序列分析(Michael Puhle),解释了如何在 R 中处理时间序列数据。此外,你还将学习如何建模和预测房价,利用协整提高对冲比率,并建模波动性。第二章,投资组合优化(Péter Csóka, Ferenc Illés, Gergely Daróczi),介绍了投资组合选择背后的理论思想,并展示了如何将原创 2025-01-21 21:28:33 · 989 阅读 · 0 评论 -
Python 机器学习算法交易实用指南(四)
由于它们能够分配有意义的标记权重,TFIDF 向量也用于总结文本数据。例如,Reddit 的autotldr功能基于类似的算法。请参阅笔记本,了解使用 BBC 文章的示例。在本章中,我们探讨了许多技术和选项来处理非结构化数据,目的是提取语义上有意义的数字特征,以供机器学习模型使用。我们介绍了基本的标记化和注释流程,并使用 spaCy 和 TextBlob 在多种语言中说明了其实现方式。我们在这些结果的基础上构建了一个基于词袋模型的文档模型,以将文档表示为数值向量。原创 2025-01-21 21:27:58 · 753 阅读 · 0 评论 -
Python 机器学习算法交易实用指南(三)
如第六章所讨论的,机器学习工作流程, logistic 回归估计一组特征与二进制结果之间的线性关系,通过 S 形函数进行调节,以确保模型产生概率。频率方法导致参数的点估计,这些参数测量了每个特征对数据点属于正类的概率的影响,并且置信区间基于关于参数分布的假设。相比之下,贝叶斯 logistic 回归估计参数本身的后验分布。后验允许对每个参数的贝叶斯可信区间进行更健壮的估计,其优点在于更透明地了解模型的不确定性。概率程序由观察到的和未观察到的随机变量(RVs)组成。原创 2025-01-21 21:27:24 · 795 阅读 · 0 评论 -
Python 机器学习算法交易实用指南(二)
在本章中,我们涵盖了投资组合管理的重要主题,这涉及将投资头寸组合起来以管理风险与回报的权衡目标。我们介绍了pyfolio来计算和可视化关键的风险和回报指标,并比较了各种算法的表现。我们看到准确预测对于优化投资组合权重和最大化分散效益是多么重要。我们还探讨了 ML 如何通过从资产收益协方差矩阵中学习层次关系来促进更有效的投资组合构建。现在我们将继续本书的第二部分,重点介绍 ML 模型的使用。原创 2025-01-21 21:26:47 · 1071 阅读 · 0 评论