keras_卷积神经网络_猫狗分类案例(一)

参考:
https://blog.csdn.net/fioletfly/article/details/101345549
Python深度学习

代码清单 5-2 在卷积神经网络上添加分类器
代码清单 5-3 在 MNIST 图像上训练卷积神经网络
代码清单 5-4 将图像复制到训练、验证和测试的目录
代码清单 5-5 将猫狗分类的小型卷积神经网络实例化
代码清单 5-6 配置模型用于训练
5.2.4 数据预处理
代码清单 5-7 使用 ImageDataGenerator 从目录中读取图像
代码清单 5-8 利用批量生成器拟合模型
代码清单 5-9 保存模型
代码清单 5-10 绘制训练过程中的损失曲线和精度曲线
5.2.5 使用数据增强
代码清单 5-11 利用 ImageDataGenerator 来设置数据增强
代码清单 5-12 显示几个随机增强后的训练图像
代码清单 5-13 定义一个包含 dropout 的新卷积神经网络
代码清单 5-14 利用数据增强生成器训练卷积神经网络
代码清单 5-15 保存模型

在这里插入代码片
```sql
import keras
keras.__version__


import os, shutil
# 我们将重点讨论猫狗图像分类,数据集中包含 4000 张猫和狗的图像
# (2000 张猫的图像, 2000 张狗的图像)。我们将 2000 张图像用于训练, 1000 张用于验证, 1000
# 张用于测试。
​
​
# The path to the directory where the original
# dataset was uncompressed
# 原始数据集解压目录的路径
original_dataset_dir = '/Users/fchollet/Downloads/kaggle_original_data'# The directory where we will
# store our smaller dataset
# 保存较小数据集的目录
base_dir = '/Users/fchollet/Downloads/cats_and_dogs_small'
os.mkdir(base_dir)
​
​
​
# 分别对应划分后的训练、# 验证和测试的目录
# Directories for our training,
# validation and test splits
train_dir = os.path.join(base_dir, 'train')
os.mkdir(train_dir)
validation_dir = os.path.join(base_dir, 'validation')
os.mkdir(validation_dir)
test_dir = os.path.join(base_dir, 'test')
os.mkdir(test_dir)
​
​
# 猫的训练图像目录
# Directory with our training cat pictures
train_cats_dir = os.path.join(train_dir, 'cats')
os.mkdir(train_cats_dir)
​
​
# 狗的训练图像目录
# Directory with our training dog pictures
train_dogs_dir = os.path.join(train_dir, 'dogs')
os.mkdir(train_dogs_dir)# 猫的验证图像目录
# Directory with our validation cat pictures
validation_cats_dir = os.path.join(validation_dir, 'cats')
os.mkdir(validation_cats_dir)# 狗的验证图像目录
# Directory with our validation dog pictures
validation_dogs_dir = os.path.join(validation_dir, 'dogs')
os.mkdir(validation_dogs_dir)# 猫的测试图像目录
# Directory with our validation cat pictures
test_cats_dir = os.path.join(test_dir, 'cats')
os.mkdir(test_cats_dir)# 狗的测试图像目录
# Directory with our validation dog pictures
test_dogs_dir = os.path.join(test_dir, 'dogs')
os.mkdir(test_dogs_dir)# 将前 1000 张猫的图像复制
# 到 train_cats_dir
# Copy first 1000 cat images to train_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(train_cats_dir, fname)
    shutil.copyfile(src, dst)#     将接下来 500 张猫的图像复
# 制到 validation_cats_dir
# Copy next 500 cat images to validation_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(validation_cats_dir, fname)
    shutil.copyfile(src, dst)
    
    
# 将接下来的 500 张猫的图像
# 复制到 test_cats_dir
# Copy next 500 cat images to test_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1500, 2000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(test_cats_dir, fname)
    shutil.copyfile(src, dst)# Copy first 1000 dog images to train_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(train_dogs_dir, fname)
    shutil.copyfile(src, dst)
    
# Copy next 500 dog images to validation_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(validation_dogs_dir, fname)
    shutil.copyfile(src, dst)
    
# Copy next 500 dog images to test_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1500, 2000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(test_dogs_dir, fname)
    shutil.copyfile(src, dst)
As a sanity check, let's count how many pictures we have in each training split (train/validation/test):

# 我们来检查一下,看看每个分组(训练 / 验证 / 测试)中分别包含多少张图像print('total training cat images:', len(os.listdir(train_cats_dir)))
total training cat images: 1000
print('total training dog images:', len(os.listdir(train_dogs_dir)))
total training dog images: 1000
print('total validation cat images:', len(os.listdir(validation_cats_dir)))
total validation cat images
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值