证明题的一些做法与思路

直接上题,不墨迹

设函数f\left ( x \right )在区间\left [ 0,1 \right ]上连续,在\left ( 0,1 \right )内可微,且f\left ( 0 \right )=f\left ( 1 \right )=0,f\left ( \frac{1}{2} \right )=1

1,证明:存在一个\xi \varepsilon \left ( \frac{1}{2},1 \right ),使得f\left ( \xi \right )=\xi

2,证明:存在一个\eta \varepsilon \left ( 0,\xi \right ),f{}'\left ( \eta \right )=f\left ( \eta \right )-\eta +1

3,若\left | f\left ( x \right ) \right |\leq A,\left | f{}''\left ( x \right ) \right |\leq B,A,B为正常数,证明:对任意x\varepsilon \left [ 0,1 \right ],有\left | f{}'\left ( x \right ) \right |\leq 2A+\frac{B}{2}

第一题,常规,不多说

1,令F\left ( x \right )=f\left ( x \right )-x

F\left ( \frac{1}{2} \right )=\frac{1}{2},F\left ( 1 \right )=-1

有零点定理可知,得证 f\left ( \xi \right )=\xi

 第二题,说实话,不难,但思路真的很重要,有时候想错了,可能就走远了,一开始我就想错了。

这种题就是构造辅助函数,可能是最近手生疏了,少做题了一开始想构造的函数居然是有关积分上限的函数就像这样:F\left ( x \right )=f\left ( x \right )-\int_{0}^{x}f\left ( t \right )dt+\frac{1}{2}x^{2}-x,想到这种无非就是把题目中要求证的结果再积分回去,得到这样的例子,虽然这个题目不适用,但是几个月前,我碰到类似的证明题,就是要用到类似证法,要用到积分上限的型式。

但在这个题,我们明显的要用罗尔的构造型式:

2,令F\left ( x \right )=f\left ( x \right )\cdot e^{-x}-x\cdot e^{-x}

F\left ( x \right )=\left ( f\left ( x \right )-x \right )\cdot e^{-x}

F\left ( 0 \right )=F\left ( \xi \right )=0

用罗尔定理.....

得证

第三题,才是重头戏,条件看起来毫无厘头,却让我们证明一堆绝对值,而且附带A,B 

在看这题前我们得先想到泰勒公式,

 其实在做这题前,我是一点都没有思路,最后也是在网上找到了思路,因为最近几年的专升本考试也是跟泰勒公式有关系,而且这题也有和泰勒有关,所以我在这么必须来一遍,本来想到是图片截一张,放上去的,想想还是算了,必须写一遍印象加固一下。

f\left ( x \right )=f\left ( x_{0} \right )+f{}'\left ( x_{0} \right )\cdot \left ( x-x_{0} \right )+\frac{1}{2}\cdot f{}''\left ( \xi \right )\cdot \left ( x-x_{0} \right )^{2},其中\xi在x与x0之间

f\left ( 0 \right )=f\left ( x_{0} \right )+f{}'\left ( x_{0} \right )\cdot \left ( 0-x_{0} \right )+\frac{1}{2}f{}''\left ( \xi _{1} \right )\cdot \left ( 0-x_{0} \right )^{2}

f\left ( 1 \right )=f\left ( x_{0} \right )+f{}'\left ( x_{0} \right )\left ( 1-x_{0} \right )+\frac{1}{2}f{}''\left ( \xi _{2} \right )\cdot \left ( 1-x_{0} \right )^{2}

所以f\left ( 1 \right )-f\left ( 0 \right )=f{}'\left ( x_{0} \right )+\frac{1}{2}f{}''\left ( \xi _{1} \right )\cdot x_{0}^{2}-\frac{1}{2}f{}''\left ( \xi _{2} \right )\cdot \left ( 1- x_{0}\right )^{2}

所以\left | f{}'\left ( x \right ) \right |\leq \left | f\left ( 0 \right )-f\left ( 1 \right )+\frac{1}{2}\cdot f{}''\left ( \xi _{1} \right )x^{2_{}}_{0}-\frac{1}{2}f{}''\left ( \xi _{2} \right )\left ( 1-x_{0} \right )^{2} \right |

然后把该大绝对值都放到一个小函数值中,然后再根据0< x< 1,f0和f1都为0

最后变能得出答案。

 最后用网上的图来完善一下。

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值