一文彻底搞懂积分等式证明题(积分证明题总结笔记1/3)

积分证明题是考研中难度较大的板块,很多学弟学妹们希望我出一篇总结文章,故作本文,希望对大家有所帮助。 本文所涉及题目,均是来自市面上常见题册(李林880,张宇1000题,汤家凤1800等)

由于内容较多,故分为三部分:

等式证明(本文所讲)
由积分判断函数零点个数(点击进入)
不等式证明(点击进入)

积分等式证明:

大致分为有参数和无参数两部分。方法总结如下图所示:
在这里插入图片描述

方法一览

1.无参数等式证明

无参数说白了,就是题目中不含“存在一点x,使得xxxxx”这样的语句。针对无参数等式,我们通常是从积分上下限和被积函数入手,进行思考。

a.分部积分

使用信号:
题目中含有 ∫ a b u ( k ) v d x 和 ∫ a b u v ( k ) d x \int_{a}^{b}u^{(k)}vdx 和 \int_{a}^{b}uv^{(k)}dx abu(k)vdxabuv(k)dx 时,可以考虑使用分部积分。

原因分析:
分部积分就是: ∫ a b u ′ ( x ) v ( x ) d x = u ( x ) v ( x ) ∣ a b − ∫ a b u ( x ) v ′ ( x ) d x \int_{a}^{b}u'(x)v(x)dx=u(x)v(x)|_{a}^{b}-\int_{a}^{b}u(x)v'(x)dx abu(x)v(x)dx=u(x)v(x)ababu(x)v(x)dx
即是把求 u ′ v u'v uv 的积分转变为求 u v uv uv 的积分。所以不难得出分部积分的“功效”就是让积分号里面的两个函数一个求导一个积分。
这里 u v uv uv没有考虑是因为对于分部积分而言, u v uv uv并不难解决,容易算出来。因此关键还是两个积分的转换。
由于分部积分可以连续使用,所以可以使积分号里面的一个函数求导若干次另一个积分若干次,如下使用k次(k为偶数)分部积分:
∫ a b u ( k ) v d x = \int_{a}^{b}u^{(k)}vdx= abu(k)vdx=某些式子 + ∫ a b u v ( k ) d x +\int_{a}^{b}uv^{(k)}dx +abuv(k)dx
若此时“某些式子”可以根据题目条件或者自身特性求出来等于0,此时即有最简形式:
∫ a b u ( k ) v d x = ∫ a b u v ( k ) d x \int_{a}^{b}u^{(k)}vdx=\int_{a}^{b}uv^{(k)}dx abu(k)vdx=abuv(k)dx
由此可见,如果题目让你求含有 ∫ a b u ( k ) v d x 和 ∫ a b u v ( k ) d x \int_{a}^{b}u^{(k)}vdx 和 \int_{a}^{b}uv^{(k)}dx abu(k)vdxabuv(k)dx 可以考虑使用分部积分来解。

例题解析:
在这里插入图片描述

本题就是找到了 ∫ 0 1 u ( 2 ) v d x 和 ∫ 0 1 u v ( 2 ) d x \int_{0}^{1}u^{(2)}vdx 和 \int_{0}^{1}uv^{(2)}dx 01u(2)vdx01uv(2)dx ,进而判断是用分部积分,且需要用两次。

b.区间再现公式

使用信号:
等式中两个积分上下限相同。且其中一个积分可以看成这种形式: ∫ a b f ( x ) g ( x ) d x , y = g ( x ) \int_{a}^{b}f(x)g(x)dx ,y=g(x) abf(x)g(x)dxy=g(x)图像关于 x = a + b 2 x=\frac{a+b}{2} x=2a+b 对称, y = f ( x ) y=f(x) y=f(x)图像 关于 x = a + b 2 x=\frac{a+b}{2} x=2a+b 上某点中心对称时,考虑使用。

原因分析:
区间再现公式为: I = ∫ a b f ( x ) g ( x ) d x 通过换元 t = a + b − x 得到: I = ∫ a b f ( a + b − t ) g ( a + b − t ) d t I=\int_{a}^{b}f(x)g(x)dx 通过换元 t=a+b-x 得到: I=\int_{a}^{b}f(a+b-t)g(a+b-t)dt I=abf(x)g(x)dx通过换元t=a+bx得到:I=abf(a+bt)g(a+bt)dt ,两者再相加除以2得:
I = 1 2 ∫ a b [ f ( a + b − x ) g ( a + b − x ) + f ( x ) g ( x ) ] d x I=\frac{1}{2}\int_{a}^{b}[f(a+b-x)g(a+b-x)+f(x)g(x)]dx I=21ab[f(a+bx)g(a+bx)+f(x)g(x)]dx 。可见经过这个换元之后,积分上下限没有发生变化——所以叫区间再现。什么时候使用这个方法呢?当然在
f ( a + b − x ) g ( a + b − x ) + f ( x ) g ( x ) 比 f ( x ) g ( x ) f(a+b-x)g(a+b-x)+f(x)g(x) 比 f(x)g(x) f(a+bx)g(a+bx)+f(x)g(x)f(x)g(x) 更简单(更容易积分)时使用。
那什么时候更简单?
显而易见: y = g ( x ) 图像关于 x = a + b 2 y=g(x)图像关于 x=\frac{a+b}{2} y=g(x)图像关于x=2a+b 对称, y = f ( x ) 关于 x = a + b 2 y=f(x) 关于 x=\frac{a+b}{2} y=f(x)关于x=2a+b 上某点中心对称时。
此时: g ( a + b − x ) = g ( x ) , f ( a + b − x ) + f ( x ) = c g(a+b-x)=g(x), f(a+b-x)+f(x)=c g(a+bx)=g(x),f(a+bx)+f(x)=c
进而: f ( a + b − x ) g ( a + b − x ) + f ( x ) g ( x ) = c g ( x ) f(a+b-x)g(a+b-x)+f(x)g(x)=cg(x) f(a+bx)g(a+bx)+f(x)g(x)=cg(x)
从而: I = c 2 ∫ a b g ( x ) d x I=\frac{c}{2}\int_{a}^{b}g(x)dx I=2cabg(x)dx ,即有: I = ∫ a b f ( x ) g ( x ) d x = c 2 ∫ a b g ( x ) d x I=\int_{a}^{b}f(x)g(x)dx=\frac{c}{2}\int_{a}^{b}g(x)dx I=abf(x)g(x)dx=2cabg(x)dx
为了方便,上述证明作为下面例题的引证。

例题解析:
区间再现公式证明积分等式
在这里插入图片描述

c.换元积分

使用信号:
上述两种方法搞不定时,尝试使用。
换元分类:
有两种常见的换元方法,一个就是 x = k t + m x=kt+m x=kt+m ,另一个就是 x = a b t x=\frac{ab}{t} x=tab
第一种( x = k t + m x=kt+m x=kt+m):
∫ a b → ∫ c d ( b > a , d > c ) \int_{a}^{b}\rightarrow\int_{c}^{d} (b>a,d>c) abcdb>a,d>c
x = k t + m x=kt+m x=kt+m ,于是有

方法思路

相关例题:
在这里插入图片描述

第二种( x = a b t x=\frac{ab}{t} x=tab):
∫ a b f ( x ) d x \int_{a}^{b}f(x)dx abf(x)dx 通过换元 x = a b t x=\frac{ab}{t} x=tab 得到 a b ∫ a b 1 t 2 f ( a b t ) d t ab\int_{a}^{b}\frac{1}{t^{2}}f(\frac{ab}{t})dt ababt21f(tab)dt

相关例题:

换元积分证明积分等式

2.有参数等式证明

有参数就是题目中含有“存在一点x,使得xxxxx”这样的语句。针对有参数的题目,我们需要研究这个参数是怎么来的,进而得到多种方法。

得到参数的方法常见有如下几种:

零点定理
介值定理
积分中值定理
微分中值定理

下面来围绕这几点来写:
由于直接使用介值定理和积分中值定理的题目较为简单,所以这里主要讲它俩和其他方法混用的情况。

a.零点定理

解题思路:
移项设函数 → \rightarrow 找两点 → \rightarrow 零点定理

具体例题:
零点定理证明积分等式

b.泰勒展开+介值定理

使用信号:
等式中含有 ∫ a b f ( x ) d x \int_{a}^{b}f(x)dx abf(x)dx f ′ ′ ( ξ ) f''(\xi) f′′(ξ) 时,考虑使用
解题思路:
在某点泰勒展开 → \rightarrow 积分 → \rightarrow 介值定理
例题如下:
在这里插入图片描述
运用泰勒展开的其中一个关键问题在于:在哪点展开。一般来说,是在区间中点处展开,因为这样积分的话,可以消除奇数阶导数,简化展开式。本题也是在中点0处展开的。

c.分部积分+积分中值定理

使用信号:
等式中含有 ∫ a b f ( x ) g ( x ) d x 和 g ∫ a ξ f d x \int_{a}^{b}f(x)g(x)dx 和 g\int_{a}^{\xi}fdx abf(x)g(x)dxgaξfdx g ∫ ξ b f d x g\int_{\xi}^{b}fdx gξbfdx 时,考虑使用
解题思路:
F ( x ) = ∫ a x f ( t ) d t → F(x)=\int_{a}^{x}f(t)dt \rightarrow F(x)=axf(t)dt 分部积分 → \rightarrow 积分中值定理 → \rightarrow 化简即可

例题如下:
分部积分+积分中值定理证明积分等式

d.微分中值定理

该方法关键步骤就是设 F ( x ) = ∫ a x f ( t ) d t F(x)=\int_{a}^{x}f(t)dt F(x)=axf(t)dt ,这样进而将含有积分的等式转变为不含积分的等式。从而能用微分中值定理的相关知识进行求解。

解题思路
F ( x ) = ∫ a x f ( t ) d t → F(x)=\int_{a}^{x}f(t)dt \rightarrow F(x)=axf(t)dt 变形 → \rightarrow 运用微分中值定理
具体使用哪种微分中值定理,可以根据变形后的式子来确定
例题如下:

罗尔定理例题:
罗尔定理证明积分等式
拉格朗日中值定理:
在这里插入图片描述

柯西中值定理:
在这里插入图片描述
到此结束~
我是煜神学长,考研我们一起加油!!!

关注TB店铺:KY煜神思维导图,了解考研数学提分利器思维导图

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值