积分证明题是考研中难度较大的板块,很多学弟学妹们希望我出一篇总结文章,故作本文,希望对大家有所帮助。 本文所涉及题目,均是来自市面上常见题册(李林880,张宇1000题,汤家凤1800等)
由于内容较多,故分为三部分:
等式证明(本文所讲)
由积分判断函数零点个数(点击进入)
不等式证明(点击进入)
积分等式证明:
大致分为有参数和无参数两部分。方法总结如下图所示:
方法一览
1.无参数等式证明
无参数说白了,就是题目中不含“存在一点x,使得xxxxx”这样的语句。针对无参数等式,我们通常是从积分上下限和被积函数入手,进行思考。
a.分部积分
使用信号:
题目中含有
∫
a
b
u
(
k
)
v
d
x
和
∫
a
b
u
v
(
k
)
d
x
\int_{a}^{b}u^{(k)}vdx 和 \int_{a}^{b}uv^{(k)}dx
∫abu(k)vdx和∫abuv(k)dx 时,可以考虑使用分部积分。
原因分析:
分部积分就是:
∫
a
b
u
′
(
x
)
v
(
x
)
d
x
=
u
(
x
)
v
(
x
)
∣
a
b
−
∫
a
b
u
(
x
)
v
′
(
x
)
d
x
\int_{a}^{b}u'(x)v(x)dx=u(x)v(x)|_{a}^{b}-\int_{a}^{b}u(x)v'(x)dx
∫abu′(x)v(x)dx=u(x)v(x)∣ab−∫abu(x)v′(x)dx
即是把求
u
′
v
u'v
u′v 的积分转变为求
u
v
uv
uv 的积分。所以不难得出分部积分的“功效”就是让积分号里面的两个函数一个求导一个积分。
这里
u
v
uv
uv没有考虑是因为对于分部积分而言,
u
v
uv
uv并不难解决,容易算出来。因此关键还是两个积分的转换。
由于分部积分可以连续使用,所以可以使积分号里面的一个函数求导若干次另一个积分若干次,如下使用k次(k为偶数)分部积分:
∫
a
b
u
(
k
)
v
d
x
=
\int_{a}^{b}u^{(k)}vdx=
∫abu(k)vdx=某些式子
+
∫
a
b
u
v
(
k
)
d
x
+\int_{a}^{b}uv^{(k)}dx
+∫abuv(k)dx
若此时“某些式子”可以根据题目条件或者自身特性求出来等于0,此时即有最简形式:
∫
a
b
u
(
k
)
v
d
x
=
∫
a
b
u
v
(
k
)
d
x
\int_{a}^{b}u^{(k)}vdx=\int_{a}^{b}uv^{(k)}dx
∫abu(k)vdx=∫abuv(k)dx
由此可见,如果题目让你求含有
∫
a
b
u
(
k
)
v
d
x
和
∫
a
b
u
v
(
k
)
d
x
\int_{a}^{b}u^{(k)}vdx 和 \int_{a}^{b}uv^{(k)}dx
∫abu(k)vdx和∫abuv(k)dx 可以考虑使用分部积分来解。
例题解析:
本题就是找到了 ∫ 0 1 u ( 2 ) v d x 和 ∫ 0 1 u v ( 2 ) d x \int_{0}^{1}u^{(2)}vdx 和 \int_{0}^{1}uv^{(2)}dx ∫01u(2)vdx和∫01uv(2)dx ,进而判断是用分部积分,且需要用两次。
b.区间再现公式
使用信号:
等式中两个积分上下限相同。且其中一个积分可以看成这种形式:
∫
a
b
f
(
x
)
g
(
x
)
d
x
,
y
=
g
(
x
)
\int_{a}^{b}f(x)g(x)dx ,y=g(x)
∫abf(x)g(x)dx,y=g(x)图像关于
x
=
a
+
b
2
x=\frac{a+b}{2}
x=2a+b 对称,
y
=
f
(
x
)
y=f(x)
y=f(x)图像 关于
x
=
a
+
b
2
x=\frac{a+b}{2}
x=2a+b 上某点中心对称时,考虑使用。
原因分析:
区间再现公式为:
I
=
∫
a
b
f
(
x
)
g
(
x
)
d
x
通过换元
t
=
a
+
b
−
x
得到:
I
=
∫
a
b
f
(
a
+
b
−
t
)
g
(
a
+
b
−
t
)
d
t
I=\int_{a}^{b}f(x)g(x)dx 通过换元 t=a+b-x 得到: I=\int_{a}^{b}f(a+b-t)g(a+b-t)dt
I=∫abf(x)g(x)dx通过换元t=a+b−x得到:I=∫abf(a+b−t)g(a+b−t)dt ,两者再相加除以2得:
I
=
1
2
∫
a
b
[
f
(
a
+
b
−
x
)
g
(
a
+
b
−
x
)
+
f
(
x
)
g
(
x
)
]
d
x
I=\frac{1}{2}\int_{a}^{b}[f(a+b-x)g(a+b-x)+f(x)g(x)]dx
I=21∫ab[f(a+b−x)g(a+b−x)+f(x)g(x)]dx 。可见经过这个换元之后,积分上下限没有发生变化——所以叫区间再现。什么时候使用这个方法呢?当然在
f
(
a
+
b
−
x
)
g
(
a
+
b
−
x
)
+
f
(
x
)
g
(
x
)
比
f
(
x
)
g
(
x
)
f(a+b-x)g(a+b-x)+f(x)g(x) 比 f(x)g(x)
f(a+b−x)g(a+b−x)+f(x)g(x)比f(x)g(x) 更简单(更容易积分)时使用。
那什么时候更简单?
显而易见:
y
=
g
(
x
)
图像关于
x
=
a
+
b
2
y=g(x)图像关于 x=\frac{a+b}{2}
y=g(x)图像关于x=2a+b 对称,
y
=
f
(
x
)
关于
x
=
a
+
b
2
y=f(x) 关于 x=\frac{a+b}{2}
y=f(x)关于x=2a+b 上某点中心对称时。
此时:
g
(
a
+
b
−
x
)
=
g
(
x
)
,
f
(
a
+
b
−
x
)
+
f
(
x
)
=
c
g(a+b-x)=g(x), f(a+b-x)+f(x)=c
g(a+b−x)=g(x),f(a+b−x)+f(x)=c
进而:
f
(
a
+
b
−
x
)
g
(
a
+
b
−
x
)
+
f
(
x
)
g
(
x
)
=
c
g
(
x
)
f(a+b-x)g(a+b-x)+f(x)g(x)=cg(x)
f(a+b−x)g(a+b−x)+f(x)g(x)=cg(x)
从而:
I
=
c
2
∫
a
b
g
(
x
)
d
x
I=\frac{c}{2}\int_{a}^{b}g(x)dx
I=2c∫abg(x)dx ,即有:
I
=
∫
a
b
f
(
x
)
g
(
x
)
d
x
=
c
2
∫
a
b
g
(
x
)
d
x
I=\int_{a}^{b}f(x)g(x)dx=\frac{c}{2}\int_{a}^{b}g(x)dx
I=∫abf(x)g(x)dx=2c∫abg(x)dx
为了方便,上述证明作为下面例题的引证。
例题解析:
c.换元积分
使用信号:
上述两种方法搞不定时,尝试使用。
换元分类:
有两种常见的换元方法,一个就是
x
=
k
t
+
m
x=kt+m
x=kt+m ,另一个就是
x
=
a
b
t
x=\frac{ab}{t}
x=tab
第一种(
x
=
k
t
+
m
x=kt+m
x=kt+m):
∫
a
b
→
∫
c
d
(
b
>
a
,
d
>
c
)
\int_{a}^{b}\rightarrow\int_{c}^{d} (b>a,d>c)
∫ab→∫cd(b>a,d>c)
设
x
=
k
t
+
m
x=kt+m
x=kt+m ,于是有
相关例题:
第二种(
x
=
a
b
t
x=\frac{ab}{t}
x=tab):
∫
a
b
f
(
x
)
d
x
\int_{a}^{b}f(x)dx
∫abf(x)dx 通过换元
x
=
a
b
t
x=\frac{ab}{t}
x=tab 得到
a
b
∫
a
b
1
t
2
f
(
a
b
t
)
d
t
ab\int_{a}^{b}\frac{1}{t^{2}}f(\frac{ab}{t})dt
ab∫abt21f(tab)dt
相关例题:
2.有参数等式证明
有参数就是题目中含有“存在一点x,使得xxxxx”这样的语句。针对有参数的题目,我们需要研究这个参数是怎么来的,进而得到多种方法。
得到参数的方法常见有如下几种:
零点定理
介值定理
积分中值定理
微分中值定理
下面来围绕这几点来写:
由于直接使用介值定理和积分中值定理的题目较为简单,所以这里主要讲它俩和其他方法混用的情况。
a.零点定理
解题思路:
移项设函数
→
\rightarrow
→ 找两点
→
\rightarrow
→ 零点定理
具体例题:
b.泰勒展开+介值定理
使用信号:
等式中含有
∫
a
b
f
(
x
)
d
x
\int_{a}^{b}f(x)dx
∫abf(x)dx 和
f
′
′
(
ξ
)
f''(\xi)
f′′(ξ) 时,考虑使用
解题思路:
在某点泰勒展开
→
\rightarrow
→ 积分
→
\rightarrow
→ 介值定理
例题如下:
运用泰勒展开的其中一个关键问题在于:在哪点展开。一般来说,是在区间中点处展开,因为这样积分的话,可以消除奇数阶导数,简化展开式。本题也是在中点0处展开的。
c.分部积分+积分中值定理
使用信号:
等式中含有
∫
a
b
f
(
x
)
g
(
x
)
d
x
和
g
∫
a
ξ
f
d
x
\int_{a}^{b}f(x)g(x)dx 和 g\int_{a}^{\xi}fdx
∫abf(x)g(x)dx和g∫aξfdx或
g
∫
ξ
b
f
d
x
g\int_{\xi}^{b}fdx
g∫ξbfdx 时,考虑使用
解题思路:
设
F
(
x
)
=
∫
a
x
f
(
t
)
d
t
→
F(x)=\int_{a}^{x}f(t)dt \rightarrow
F(x)=∫axf(t)dt→ 分部积分
→
\rightarrow
→ 积分中值定理
→
\rightarrow
→ 化简即可
例题如下:
d.微分中值定理
该方法关键步骤就是设 F ( x ) = ∫ a x f ( t ) d t F(x)=\int_{a}^{x}f(t)dt F(x)=∫axf(t)dt ,这样进而将含有积分的等式转变为不含积分的等式。从而能用微分中值定理的相关知识进行求解。
解题思路
设
F
(
x
)
=
∫
a
x
f
(
t
)
d
t
→
F(x)=\int_{a}^{x}f(t)dt \rightarrow
F(x)=∫axf(t)dt→ 变形
→
\rightarrow
→ 运用微分中值定理
具体使用哪种微分中值定理,可以根据变形后的式子来确定
例题如下:
罗尔定理例题:
拉格朗日中值定理:
柯西中值定理:
到此结束~
我是煜神学长,考研我们一起加油!!!
关注TB店铺:KY煜神思维导图,了解考研数学提分利器思维导图