考研数二第十六讲 不定积分-换元积分和分部积分以及有理函数的积分

第一类换元积分法——凑微分法

假设现在我们要对一个复合函数f[g(x)] 求不定积分,但我只有 ∫ f ( x ) d x = F ( x ) \int f(x)dx = F(x) f(x)dx=F(x) 这一积分公式。这时候就要想,要是中括号里不是g(x) 而是 x该多好啊。

如果我直接令u=g(x) ,强行让原式变为 ∫ f ( u ) d u \int f(u)du f(u)du 的话,就可以用积分公式了。

下面给出一些例题来进行具体说明:
例1:求 ∫ e 2 x + 1 d x \int e^{2x+1}dx e2x+1dx

解:观察发现,这显然是一个复合函数,其内层函数为 u=2x+1 。那么我们可以考虑使用第一类换元法进行求解。

但容易发现,这个被积表达式并不符合条件。那我们不妨进行一下变形。

现在有了一个复合函数,只需要在后面乘上内层函数的导函数即可,即 ∫ e 2 x + 1 . 2 d x \int e^{2x+1}.2dx e2x+1.2dx 但是为了等价,我们要给整体除以2,得到 1 2 ∫ e 2 x + 1 . 2 d x \frac{1}{2}\int e^{2x+1}.2dx 21e2x+1.2dx .

这下子我们可以用凑微分法了,把前面乘的2拿到微分符号后面d(2x),得到 ,但是为了方便积分,我们用它的等价形式d(2x+1) .

这样原式就变成了 1 2 ∫ e 2 x + 1 d ( 2 x + 1 ) \frac{1}{2}\int e^{2x+1}d(2x+1) 21e2x+1d(2x+1) .不妨令u=2x+1 ,则原式变为 1 2 ∫ e u d ( u ) \frac{1}{2}\int e^{u}d(u) 21eud(u)

容易求得,结果为 1 2 e u + C \frac{1}{2}e^{u}+C 21eu+C

但是还没结束,我们要把变量换回去,即 1 2 e 2 x + 1 + C \frac{1}{2}e^{2x+1}+C 21e2x+1+C

∫ e 2 x + 1 d x \int e^{2x+1}dx e2x+1dx = 1 2 e 2 x + 1 + C \frac{1}{2}e^{2x+1}+C 21e2x+1+C

【结论1】当内层函数为线性函数[u=g(x)=ax+b ]时,原式可以按照下面的方法进行变形:
在这里插入图片描述
在这里插入图片描述

三角换元(第二类换元法)

第二类换元法的主要应用是利用带有平方的三角恒等式来去除被积函数中的根号。

要去除根号,无非就是两种方法:一是对根式平方;二是当根号下的式子是完全平方式时,把它开出来。显然,第一种方法无法做到在积分式子中等价变形,所以我们考虑第二种方法,构造出完全平方式[1]来去除根号。

注意到三角恒等式中,平方是经常出现的,比如:
sin ⁡ 2 x + cos ⁡ 2 x = 1 \sin^2 x +\cos ^2x =1 sin2x+cos2x=1
sec ⁡ 2 x = 1 + tan ⁡ 2 x \sec ^2 x = 1+ \tan ^2 x sec2x=1+tan2x
在这里插入图片描述

∫ 1 x 2 − a 2 d x \int \frac{1}{\sqrt{x^2-a^2}}dx x2a2 1dx
在这里插入图片描述
在这里插入图片描述

分部积分法

学完两种换元积分法以后,我发现学数学一定要有逆向思维的过程,也就是从某个过程的逆过程入手来研究某种运算。分部积分法就是这样得出的。
在这里插入图片描述
对(3)式变形就可以得到分部积分法的公式

在这里插入图片描述
为了方便做题,人们总结出了这样一句口诀:“反对幂指三”。口诀中的五个字分别对应了反三角函数、对数函数、幂函数、指数函数和三角函数。这个顺序正着就是不凑入微分符号的函数类型,逆着读就是优先凑入微分符号的函数类型。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

有理函数的积分

首先我们来看一下什么是有理函数。所谓有理函数,其实就是两个仅由幂函数构成的多项式相除,比如 x 2 + 3 x − 1 \frac{x^2+3}{x-1} x1x2+3, x 2 − 2 x + 2 x 3 − 2 x + 1 \frac{x^2-2x+2}{x^3-2x+1} x32x+1x22x+2 .当然,一个单独的幂函数也是有理函数。

如果要对上面一个相对复杂一点有理函数(比如上面的两个式子)进行积分,我们发现前面我们讲的方法都不能直接使用,也就是说,我们需要改变有理函数的形式,使其变成我们可以处理的形式再积分,而这个过程就是有理函数的积分。

对于一个分数,有真分数与假分数之分。同样的,对于一个分式,也有真分式与假分式之分。即,分子的最高次数小于分母的最高次数的分式为真分式,反之则为假分式。而假分式总是可以拆成真分式与多项式的和。
例如: x 2 + 1 x + 1 = x + 1 − x 1 + x \frac{x^2+1}{x+1}=x+\frac{1-x}{1+x} x+1x2+1=x+1+x1x
而且,拆出来的那一个多项式是比较容易求积分的。这样我们就可以只分析有理函数中真分式的积分了。

真分式拆分:
在这里插入图片描述
在这里插入图片描述
对于有理函数的积分,可以总结为一下几个步骤:

  • 预处理,把假分式通过一定的手段化为多项式与真分式的和;

  • 因式分解,把原式的分母进行因式分解,分解至分母中的因子最高次数为二次且不可继续分解;

  • 拆分有理函数,按照讲的规则,把真分式拆成几个简单真分式的和;

  • 求待定系数,常见的有通分并对比系数和留数法;

  • 求解积分,通常会用到凑微分法。

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
探索全栈前端技术的魅力:HTML+CSS+JS+JQ+Bootstrap网站源码深度解析 在这个数字化时代,构建一个既美观又功能强大的网站成为了许多开发者和企业追逐的目标。本份资源精心汇集了一套完整网站源码,融合了HTML的骨架搭建、CSS的视觉美化、JavaScript的交互逻辑、jQuery的高效操作以及Bootstrap的响应式设计,全方位揭秘了现代网页开发的精髓。 HTML,作为网页的基础,它构建了信息的框架;CSS则赋予网页生动的外观,让设计创意跃然屏上;JavaScript的加入,使网站拥有了灵动的交互体验;jQuery,作为JavaScript的强力辅助,简化了DOM操作与事件处理,让编码更为高效;而Bootstrap的融入,则确保了网站在不同设备上的完美呈现,响应式设计让访问无界限。 通过这份源码,你将: 学习如何高效组织HTML结构,提升页面加载速度与SEO友好度; 掌握CSS高级技巧,如Flexbox与Grid布局,打造适应各种屏幕的视觉盛宴; 理解JavaScript核心概念,动手实现动画、表单验证等动态效果; 利用jQuery插件快速增强用户体验,实现滑动效果、Ajax请求等; 深入Bootstrap框架,掌握移动优先的开发策略,响应式设计信手拈来。 无论是前端开发新手渴望系统学习,还是资深开发者寻求灵感与实用技巧,这份资源都是不可多得的宝藏。立即深入了解,开启你的全栈前端探索之旅,让每一个网页都成为技术与艺术的完美融合!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员路同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值