写在前面:大家好!我是【AI 菌】,一枚爱弹吉他的程序员。我
热爱AI、热爱分享、热爱开源
! 这博客是我对学习的一点总结与记录。如果您也对深度学习、机器视觉、算法、Python、C++
感兴趣,可以关注我的动态,我们一起学习,一起进步~
我的博客地址为:【AI 菌】的博客
我的Github项目地址是:【AI 菌】的Github
本教程会持续更新,如果对您有帮助的话,欢迎star收藏~
前言:
本专栏将分享我从零开始搭建神经网络的学习过程,注重理论与实战相结合,力争打造最易上手的小白教程。在这过程中,我将使用谷歌TensorFlow2.0框架逐一复现经典的卷积神经网络:LeNet、AlexNet、VGG系列、GooLeNet、ResNet 系列、DenseNet 系列,以及现在比较流行的:RCNN系列、SSD、YOLO系列等。
这一次我将复现非常经典的GooLeNet卷积神经网络。首先在理论部分,我会依据论文对GooLeNet进行一个简要的讲解。然后在实战部分,我会对自定义数据集进行加载、搭建GooLeNet网络、迭代训练,最终完成图片分类和识别任务。
系列教程:
深度学习环境搭建:Anaconda3+tensorflow2.0+PyCharm
TF2.0深度学习实战(二):用compile()和fit()快速搭建卷积神经网络
TF2.0深度学习实战(三):搭建LeNet-5卷积神经网络
TF2.0深度学习实战(四):搭建AlexNet卷积神经网络
资源传送门:
论文地址:《Going deeper with convolutions》
论文翻译:GoogLeNet 原文翻译:《Going deeper with convolutions》
github项目地址:【AI 菌】的Github
数据集下载: