探索如何利用向量数据库提升大型语言模型,为精准、具有上下文意识的人工智能解决方案。
文章目录
欢迎来到我们的实用指南,在这里我们将深入探讨大型语言模型(LLMs)及其与向量数据库的协同作用。LLMs在科技领域产生了深远影响,推动了应用开发的创新。然而,当单独使用时,它们的全部潜力往往无法得到充分发挥。这就是向量数据库发挥作用的地方,它们增强了LLMs的能力,使其不仅产生任何回应,而是产生正确的回应。
通常,LLMs会在各种数据上进行训练,这使它们具有广泛的理解能力,但可能导致特定知识领域存在空白。有时,它们甚至可能输出与目标无关或带有偏见的信息 —— 这是从庞大、未经过滤的网络学习的副产品。为了解决这一问题,我们引入了向量数据库的概念。这些数据库以一种称为“向量嵌入”的独特格式存储数据,使LLMs能够更具上下文和准确性地理解和利用信息。
本指南介绍了如何使用向量数据库构建LLM并改进LLM对这种流的使用。我们将探讨如何结合这两者可以使LLMs更加准确和有用,特别是对于特定主题。
接下来,我们将简要概述向量数据库,解释向量嵌入的概念及其在增强人工智能和机器学习应用中的作用。我们将向您展示这些数据库与传统数据库的区别,以及它们为AI驱动任务提供更好支持的原因,特别是在处理文本、图像和复杂模式等非结构化数据时。
此外,我们将探讨这项技术在构建闭环问答机器人中的实际应用。这款机器人由Falcon-7B和ChromaDB提供支持,展示了当LLMs与正确的工具和技术结合时的有效性。
通过本指南,您将更清楚地了解如何利用LLMs和向量数据库的力量创建不仅创新而且具有上下文意识和可靠性的应用程序。无论您是人工智能爱好者还是经验丰富的开发人员,本指南都旨在帮助您轻松自信地探索这个令人兴奋的领域。
向量数据库简要概述
在深入了解向量数据库是什么之前,理解向量嵌入的概念至关重要。向量嵌入在机器学习中至关重要,用于将原始数据转换为人工智能系统可以理解的数值格式。这涉及将数据(如文本或图像)转换为一系列数字,称为向量,在高维空间中。高维数据指的是具有许多属性或特征的数据,每个特征代表不同的维度。这些维度有助于捕捉数据的微妙特征。
创建向量嵌入的过程始于输入数据,这可以是句子中的单词或图像中的像素等任何内容。大型语言模型和其他人工智能算法分析这些数据并识别其关键特征。例如,在文本数据中,这可能涉及理解单词的含义以及它们在句子中的上下文。嵌入模型然后将这些特征转换为数值形式,为每个数据片段创建一个向量。向量中的每个数字代表数据的特定特征,这些数字共同体现了原始输入的本质,以便机器可以处理。
这些向量是高维的,因为它们包含许多数字,每个数字对应数据的不同特征。这种高维度使得向量能够捕捉复杂、详细的信息,使它们成为人工智能模型的强大工具。模型使用这些嵌入来识别数据中的模式、关系和潜在结构。
向量数据库旨在提供针对向量嵌入独特性质的优化存储和查询能力。它们擅长提供高效的搜索能力、高性能、可扩展性和数据检索,通过比较和识别数据点之间的相似性来实现。
这些复杂、高维信息的数值表示使向量数据库与主要存储文本和数字等格式的传统系统有所不同。它们的主要优势在于管理和查询诸如图像、视频和文本等数据类型,特别是在这些数据被转换为机器学习和人工智能应用所需的向量格式时。
在下图中,我们展示了将文本转换为单词向量的过程。这一步在自然语言处理中至关重要,使我们能够量化和分析语言关系。例如,“小狗”的向量表示在向量空间中会更接近“狗”而不是“房子”,反映了它们的语义接近性。这种方法也适用于类比关系。在“男人”和“女人”之间的向量距离和方向可以类比于“国王”和“皇后”之间的关系。这说明了单词向量不仅代表单词,还允许在多维向量空间中对它们的语义关系进行有意义的比较。
LLMs兴起之前的向量数据库
设计用于处理向量嵌入的向量数据库在机器学习和人工智能领域有几个关键用例,特别是:
相似性搜索: 这是向量数据库擅长的核心功能。它们可以快速在高维空间中找到与给定查询相似的数据点。这对于诸如图像或音频检索等应用至关重要,其中您希望找到与特定输入相似的项目。以下是一些行业用例示例:
- 电子商务: 通过允许客户搜索与参考图像视觉相似的产品,增强产品发现功能。
- 音乐流媒体服务: 找到并推荐具有与用户喜爱曲目相似音频特征的歌曲。
- 医疗影像: 通过检索显示类似病变的医学图像(如X射线或MRI)来协助放射科医生进行比较分析。
推荐系统: 向量数据库通过处理用户和项目嵌入来支持推荐系统。它们可以将用户与最符合其兴趣或过去互动的项目(如产品、电影或文章)匹配。以下是一些行业用例:
- 流媒体平台: 通过根据观看历史推荐电影和电视节目,个性化观影体验。
- 在线零售商: 根据用户浏览和购买历史推荐产品,增强交叉销售和提升销售机会。
- 新闻聚合器: 通过将文章与读者过去的互动模式和偏好匹配,提供个性化新闻订阅。
基于内容的检索: 在这里,向量数据库用于根据内容本身而不是传统元数据搜索内