MTK MFNR 学习笔记

本文详细介绍了MTK平台的MFNR和MFLL多帧降噪算法,涉及开关设置、决策逻辑、相关ADB命令以及日志分析的关键点。通过实例展示了MFNR在拍照过程中的作用和控制方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

87c3ba6af6c92261695545977f56a2d0.gif

和你一起终身学习,这里是程序员Android

经典好文推荐,通过阅读本文,您将收获以下知识点:

一、MFNR 简介
二、MFNR 开关与决策
三、MFNR 相关的adb 命令
四、MFNR log 分析
五 参考文献

一、MFNR 简介

MFNR : Multiple Frame Noise Reduction
MFLL : Multiple Frame Low Light
BSS : Best Select Shot

MFNR 跟 MFLL 是两个功能一致,名称不同的简称,是MTK 推出的YUV domain 多帧降噪的算法。

MFNR 是在 P2_CaputureNode 中 CaptureFeaturePipe 的路径,多帧的raw 首先在 rootnode 中做 bss,同时会做 recorder 动作,然后依次进入到 P2ANode 做 raw2yuv ,产生的yuv等image,送到 MultiFrameNode(挂载 MFNR 算法)中进行多帧降噪处理,产生一张降噪后的YUV;如果还挂在其他的单帧YUV算法,则送YUVNode 处理,最终送到MDPNode 做crop ,resize处理;
大致流程如下:
Raws--> RootNode(BSS)-->Raws-->P2A(Raw2Yuv)-->YUVs-->MultiFrameNode(MFNR)-->YUV-->YUVNode-->YUV-->MDPNode-->Yuv

二、MFNR 开关与决策

2.1 MFNR 开关设置

开关控制在:MTK_CAM_MFB_SUPPORT
代码路径:
/device/*/ProjectConfig.mk
如果支持,默认建议设置为 3
MTK_CAM_MFB_SUPPORT =3

0: 关 MFLL 
 1:开 MFLL
 2:开 AIS 
 3:开 MFLL 和AIS
  • 1.不支持MFNR时,请在 app 中设置

MTK_MFNR_FEATURE_MFB_MODE 为 MTK_MFNR_FEATURE_MFB_OFF

  • 2.支持MFNR 时,请在 app 中设置

MTK_MFNR_FEATURE_MFB_MODE 为 MTK_MFNR_FEATURE_MFB_AUTO,由 CUST_MFLL_AUTO_MODE 决策走哪个模式

  • 3.当支持AIS时,可以使用下面二者任一种

1.MTK_MFNR_FEATURE_AIS_MODE = MTK_MFNR_FEATURE_AIS_ON
2.MTK_MFNR_FEATURE_MFB_MODE = MTK_MFNR_FEA

### NPU 技术原理及应用场景 神经处理单元(Neural Processing Unit, NPU)是一种专门用于加速人工智能计算任务的硬件处理器。其设计目标是高效执行深度学习中的矩阵运算和卷积操作,从而显著提升推理和训练的速度与能效。NPU 的核心技术在于通过专用架构优化常见的机器学习工作负载,例如张量乘法、激活函数计算以及权重存储管理。 在未来的发展趋势中,NPU 不仅会在 AI PC 中占据重要地位,还会扩展到嵌入式和移动设备领域,成为驱动智能计算的核心力量[^1]。为了满足日益多样化的应用需求,未来的 NPU 将更加注重灵活性和支持多种算法模型的能力[^2]。 #### 应用场景 - **智能家居**:语音识别、图像分析等功能依赖于高效的 NPU 处理能力。 - **自动驾驶**:实时感知环境并做出决策需要强大的边缘计算性能。 - **医疗健康**:快速诊断疾病影像数据依靠高性能的本地化 AI 推理。 ```python import numpy as np def simulate_npu_computation(input_tensor, weights): """ Simulates a basic tensor operation that an NPU might perform. """ result = np.dot(input_tensor, weights.T) return result ``` --- ### MFNR 技术原理及应用场景 多帧降噪恢复(Multi-Frame Noise Reduction, MFNR)是一项专注于改善视频质量的技术。它通过对连续多个帧的数据进行联合处理来减少噪声干扰,同时保留更多细节信息。MFNR 利用了时间冗余特性,在不同帧之间寻找相似区域来进行协同滤波。 该方法特别适合低光照条件下的摄像机成像问题解决,因为它能够有效降低随机热噪声而不会模糊运动物体边界。 #### 应用场景 - **安防监控摄像头**:提高夜间拍摄清晰度。 - **手机摄影模式增强功能**:提供更好的弱光拍照效果。 - **工业视觉检测系统**:精确捕捉高速生产线上的产品表面缺陷。 --- ### AINR 技术原理及应用场景 基于人工智能的单帧降噪恢复(AI-based Single Frame Noise Reduction, AINR),利用先进的深度学习网络结构自动提取特征并对单一输入图片完成去噪任务。相比传统方法,AINR 可以更好地平衡信噪比与纹理保持之间的关系,尤其适用于复杂背景或者高频变化的内容处理场合。 由于采用了端到端的学习框架,AINR 能够自适应调整参数配置以适配不同的传感器特性和环境因素影响。 #### 应用场景 - **无人机航拍稳定器集成模块**:即使在恶劣天气条件下也能获得干净的画面输出。 - **医学超声波仪器升级方案**:改进早期版本因采样率不足而导致的伪影现象。 - **虚拟现实头显渲染引擎插件**:减轻长时间佩戴引起的眩晕感并通过高质量素材呈现沉浸体验。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员Android

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值