第6篇:Milvus检索算法详解:从原理到应用

欢迎来到Milvus检索算法的世界!在本文,我将带你深入了解Milvus的向量相似度计算和常用的检索算法。通过这篇博客,你将了解Milvus是如何高效计算向量相似度并进行向量检索的。准备好了吗?让我们开始这段知识之旅吧!

Milvus的向量相似度计算

向量相似度计算的原理

向量相似度计算是检索算法的核心,它通过计算两个向量之间的距离或相似度,确定它们的相似程度。常用的相似度计算方法包括欧氏距离、余弦相似度和内积。

欧氏距离

欧氏距离是一种最直观的距离度量方法,计算两个向量在多维空间中的直线距离。公式如下:

[ t e x t E u c l i d e a n D i s t a n c e = ∑ i = 1 n ( x i − y i ) 2 ] [ text{Euclidean Distance} = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} ] [textEuclideanDistance=i=1n(xiyi)2 ]

余弦相似度

余弦相似度通过计算两个向量夹角的余弦值来衡量它们的相似度。余弦相似度的取值范围在[-1, 1]之间,值越大,向量越相似。公式如下:

[ Cosine Similarity = ∑ i = 1 n x i y i ∑ i = 1 n x i 2 ∑ i = 1 n y i 2 ] [ \text{Cosine Similarity} = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}} ] [Cosine Similarity=i=1nxi2 i=1nyi2 i=1nxiyi]

内积

内积是向量相似度计算中最简单的一种方法,直接计算两个向量的点积。公式如下:

[ Inner Product = ∑ i = 1 n x i y i ] [ \text{Inner Product} = \sum_{i=1}^{n} x_i y_i ] [Inner Product=i=1nxiyi]

向量相似度计算的作用和应用场景

向量相似度计算在许多应用场景中起着关键作用,例如:

  1. 图像搜索:通过计算图像特征向量的相似度,快速找到相似的图像。
  2. 文本搜索:通过计算文本嵌入向量的相似度,找到语义相似的文本。
  3. 推荐系统:通过计算用户和物品向量的相似度,为用户推荐个性化内容。

常用检索算法

1. FLAT(Brute-force)

原理和逻辑

FLAT(Brute-force)是一种基于暴力搜索的检索算法,通过遍历所有向量计算距离或相似度,找到最相似的向量。FLAT的核心思想是利用线性扫描,进行精确的最近邻搜索。

数据存储结构

FLAT索引的存储结构非常简单,所有向量存储在一个数组中。

FLAT原理
存储向量
数组存储
搜索
遍历所有向量
  • 29
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gemini技术窝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值