测度论与概率论基础学习笔记8——3.2积分的性质

积分的性质之前也多少介绍过一些,这篇主要写Lebesgue控制收敛定理。为了证明此定理,引入Levi定理和Fatou引理。

Levi引理
{ f n } \{f_n\} {fn} f f f均是a.e.的非负可测函数,如果 f n ↑ f a . e . f_n \uparrow f a.e. fnfa.e.(不减收敛至 f f f),则
∫ X f n d μ ↑ ∫ X f d μ \int_{X}f_nd\mu \uparrow \int_{X}fd\mu XfndμXfdμ
证略。

Fatou引理
下极限的积分小于等于积分的下极限。具体地:
对任何非负可测函数序列 { f n } \{f_n\} {fn},有
∫ X lim inf ⁡ n → ∞ f n d μ ≤ lim inf ⁡ n → ∞ ∫ X f n d μ \int_{X}\liminf_{n\to\infty}f_nd\mu\le\liminf_{n\to\infty}\int_{X}f_nd\mu XnliminffndμnliminfXfndμ

证:作辅助函数 g k = inf ⁡ n ≥ k f n g_k=\inf_{n\ge k}f_n gk=infnkfn,显然 g n ↑ lim inf ⁡ n → ∞ f n g_n\uparrow \liminf_{n\to\infty} f_n gnnliminffn,由Levi引理即得。

Fatou引理之推论

  • 推论1.若存在可积函数 g g g使得 ∀ n : f n ≥ g \forall n:f_n\ge g n:fng,则 lim inf ⁡ n → ∞ f n \liminf_{n\to\infty}f_n nliminffn积分存在且满足Fatou引理。
  • 上极限的积分大于等于积分的上极限。

Lebesgue控制收敛定理
我的理解:Lebesgue控制收敛定理就是描述了积分和极限可交换位置的一个条件。其实交换位置这种事情,在工科里好像根本没人在意哈哈。

{ f n } \{f_n\} {fn} f f f均是非负可测函数,若存在非负可积函数 g g g使得 ∀ n : f n ≤ g   a . e . \forall n:f_n\le g\space a.e. n:fng a.e.,则 f n → a . e . f f_n \stackrel{a.e.}{\rightarrow}f fna.e.f f n → u . f f_n \stackrel{u.}{\rightarrow}f fnu.f蕴含:
lim ⁡ n → ∞ ∫ X f n d μ = ∫ X f d μ \lim_{n\to\infty}\int_{X}f_nd\mu = \int_{X}fd\mu nlimXfndμ=Xfdμ

证明:
既然 f n → a . e . f f_n \stackrel{a.e.}{\rightarrow}f fna.e.f,则上极限与下极限相同,再根据Fauto引理,有:
在这里插入图片描述
对于 f n → u . f f_n \stackrel{u.}{\rightarrow}f fnu.f的情况,由于按测度收敛时必有子列几乎一致收敛,即得。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值