积分的性质之前也多少介绍过一些,这篇主要写Lebesgue控制收敛定理。为了证明此定理,引入Levi定理和Fatou引理。
Levi引理
设
{
f
n
}
\{f_n\}
{fn}和
f
f
f均是a.e.的非负可测函数,如果
f
n
↑
f
a
.
e
.
f_n \uparrow f a.e.
fn↑fa.e.(不减收敛至
f
f
f),则
∫
X
f
n
d
μ
↑
∫
X
f
d
μ
\int_{X}f_nd\mu \uparrow \int_{X}fd\mu
∫Xfndμ↑∫Xfdμ
证略。
Fatou引理
下极限的积分小于等于积分的下极限。具体地:
对任何非负可测函数序列
{
f
n
}
\{f_n\}
{fn},有
∫
X
lim inf
n
→
∞
f
n
d
μ
≤
lim inf
n
→
∞
∫
X
f
n
d
μ
\int_{X}\liminf_{n\to\infty}f_nd\mu\le\liminf_{n\to\infty}\int_{X}f_nd\mu
∫Xn→∞liminffndμ≤n→∞liminf∫Xfndμ
证:作辅助函数 g k = inf n ≥ k f n g_k=\inf_{n\ge k}f_n gk=infn≥kfn,显然 g n ↑ lim inf n → ∞ f n g_n\uparrow \liminf_{n\to\infty} f_n gn↑n→∞liminffn,由Levi引理即得。
Fatou引理之推论
- 推论1.若存在可积函数 g g g使得 ∀ n : f n ≥ g \forall n:f_n\ge g ∀n:fn≥g,则 lim inf n → ∞ f n \liminf_{n\to\infty}f_n n→∞liminffn积分存在且满足Fatou引理。
- 上极限的积分大于等于积分的上极限。
Lebesgue控制收敛定理
我的理解:Lebesgue控制收敛定理就是描述了积分和极限可交换位置的一个条件。其实交换位置这种事情,在工科里好像根本没人在意哈哈。
设
{
f
n
}
\{f_n\}
{fn}和
f
f
f均是非负可测函数,若存在非负可积函数
g
g
g使得
∀
n
:
f
n
≤
g
a
.
e
.
\forall n:f_n\le g\space a.e.
∀n:fn≤g a.e.,则
f
n
→
a
.
e
.
f
f_n \stackrel{a.e.}{\rightarrow}f
fn→a.e.f或
f
n
→
u
.
f
f_n \stackrel{u.}{\rightarrow}f
fn→u.f蕴含:
lim
n
→
∞
∫
X
f
n
d
μ
=
∫
X
f
d
μ
\lim_{n\to\infty}\int_{X}f_nd\mu = \int_{X}fd\mu
n→∞lim∫Xfndμ=∫Xfdμ
证明:
既然
f
n
→
a
.
e
.
f
f_n \stackrel{a.e.}{\rightarrow}f
fn→a.e.f,则上极限与下极限相同,再根据Fauto引理,有:
对于
f
n
→
u
.
f
f_n \stackrel{u.}{\rightarrow}f
fn→u.f的情况,由于按测度收敛时必有子列几乎一致收敛,即得。