测度论与概率论基础学习笔记7——3.1积分的定义


学习测度论,就能得到对积分的更本质和深刻的理解。


1.非负简单函数的积分
先补充简单函数的概念:(造化不够,经常漏概念!)
定义:简单函数:设 f ( x ) f(x) f(x)的定义域 E E E可分为有限个不相交的可测集 E 1 , E 2 , … , E n E_1,E_2,\dots,E_n E1,E2,,En,且 ∪ i E i = E \cup_iE_i=E iEi=E,若函数在每个可测集 E i E_i Ei上的取值都为一个常数 C i C_i Ci,则称其为简单函数。所以简单函数也可以说成是阶梯函数。

f f f是简单函数,则存在测度空间 ( X , F , μ ) (X,\mathscr F,\mu) (X,F,μ)的有限可测分割 { A i } \{A_i \} {Ai}和实数 { a i } \{a_i\} {ai}使得 f = ∑ i a i I A i f=\sum_{i}a_iI_{A_i} f=iaiIAi,其中 I I I是指示函数。因此,我们可以如下定义积分:
∫ X f d μ = ∑ i = 1 n a i μ ( A i ) \int_{X}fd\mu=\sum_{i=1}^n a_i\mu(A_i) Xfdμ=i=1naiμ(Ai)
因此,该积分本质上就是(有限可测分割的)测度的加权平均和。

命题1:非负简单函数积分的性质:

  1. 指示函数的积分就是测度: ∫ X I A d μ = μ ( A ) \int_X I_Ad\mu=\mu(A) XIAdμ=μ(A)
  2. 非负
  3. 线性性
  4. 大小关系:若 f ≥ g f\ge g fg,则 ∫ X f d μ ≥ ∫ X g d μ \int_Xfd\mu\ge\int_Xgd\mu XfdμXgdμ
  5. 极限:若 lim ⁡ n → ∞ f n ≥ g \lim_{n\to\infty}f_n\ge g limnfng,则 lim ⁡ n → ∞ ∫ X f n d μ ≥ ∫ X g d μ \lim_{n\to\infty}\int_Xf_nd\mu\ge\int_Xgd\mu limnXfndμXgdμ

  \space  
2.非负可测函数的积分
讲完了非负简单函数,再看非负可测函数的积分。定义如下:
∫ X f d μ = d e f sup ⁡ { ∫ X g d μ : g 非 负 简 单 且 g ≤ f } \int_Xfd\mu\stackrel{def}{=} \sup\{\int_Xgd\mu:g非负简单且g\le f\} Xfdμ=defsup{Xgdμ:ggf}

命题2:非负可测函数积分的性质
线性性与非负性和非负简单函数积分相同,下面重点看这个:
{ f n } \{f_n\} {fn}是非负简单函数且 f n ↑ f f_n\uparrow f fnf,则 lim ⁡ n → ∞ ∫ X f n d μ = ∫ X f d μ \lim_{n\to\infty}\int_Xf_nd\mu=\int_Xfd\mu limnXfndμ=Xfdμ

这解决了函数列极限的积分问题。事实上,对于Riemman积分,如果函数列的极限不可积,那就不好了,但是Lebesgue积分解决了这个问题。
实际上,粗浅地讲,本节测度论中的积分与Riemman积分的不同之处就在于前者是对 μ \mu μ(值域)积分,而后者是分割自变量 x x x。如下图所示,上面是Riemman积分,下面是本节所讲的积分。Riemman积分是无限分割,测度论的积分是有限分割。

在这里插入图片描述

特别地,如果Lebesgue可测函数 g g g对于Lebuesgue测度 λ \lambda λ的积分存在,则称之为Lebesgue积分,即:
∫ R g ( x ) d x = d e f ∫ R g d λ \int_{\mathbf R}g(x)dx\stackrel{def}{=}\int_{\mathbf R}gd\lambda Rg(x)dx=defRgdλ
因此,Riemman积分实际上是Lebesgue积分的特殊情形。
  \space  
3.一般可测函数的积分
对于不一定非负的可测函数,我们将其划分为正部和负部,正部就是其为正的部分,负部就是其为负的部分,二者是互斥的,因此:
f = f + − f − f=f^+-f^- f=f+f
则根据前面积分的可加性,有 ∫ X f d μ = ∫ X f + d μ − ∫ X f − d μ \int_Xfd\mu=\int_Xf^+d\mu-\int_Xf^-d\mu Xfdμ=Xf+dμXfdμ
因此,若等式右边的两个积分都为无穷,则左边的积分没有意义否则称为存在或有意义。同时,若右边的两个积分都为有限数,就称 f f f可积的

定理3:
f f f是可测空间 ( X , F , μ ) (X,\mathscr F,\mu) (X,F,μ)上的可测函数:

  1. f f f的积分存在,则 ∣ ∫ X f d μ ∣ ≤ ∫ X ∣ f ∣ d μ |\int_Xfd\mu| \le \int_X|f|d\mu XfdμXfdμ
  2. f f f可积当且仅当 ∣ f ∣ |f| f可积
  3. f f f可积,则 ∣ f ∣ < ∞   a . e . |f|<\infty \space a.e. f< a.e.

定理4:
f , g f,g f,g是可测空间 ( X , F , μ ) (X,\mathscr F,\mu) (X,F,μ)上的可测函数:

  1. 零测集处积分为0.即对 A ∈ F , μ ( A ) = 0 A\in\mathscr F ,\mu(A)=0 AF,μ(A)=0,有 ∫ A f d μ = 0 \int_Afd\mu = 0 Afdμ=0
  2. f ≥ g   a . e . f\ge g\space a.e. fg a.e.,则 ∫ X f d μ ≥ ∫ X g d μ \int_Xfd\mu \ge \int_Xgd\mu XfdμXgdμ
  3. f = g   a . e . f=g\space a.e. f=g a.e.,则只要其中任一个的积分存在,另一个的积分也存在而且两个积分值相等。

上面两个定理的证明很漂亮,在此就不记了(证明记了也是忘),这些定理基本上还是比较直观的。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值