AI智能体|基于已有的扣子Coze Bot进行插件化改造

大家好,我是无界生长,国内最大AI付费社群“AI破局俱乐部”初创合伙人。

AI智能体|基于已有的扣子Coze Bot进行插件化改造本文通过案例演示的方式,介绍了如何将扣子Coze平台创建的Bot改造成插件并发布到插件商店供第三方使用。如果看完还没学会的话,可以在文章下方评论或私信我。学会了的话,欢迎转发分享给你的朋友们。icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzU1MjgyOTA5NQ==&mid=2247484554&idx=1&sn=f5c4ab04c6f875ee7521f7aca160955b&chksm=fbfd6d42cc8ae4544887d0610f5a318f3e3559811e536ed4d18cbc823dca120f02ad87b71d41&token=1599214523&lang=zh_CN#rd

扣子Coze开放了Bot的API,我们可以基于已有的Bot进行插件化改造,上架到插件商店,从而提供给第三方使用,以“无界生长的绘画助手”这个Bot为例,我们把它改成插件的方式。

操作流程

  1. 创建Token

  2. 修改Bot配置

  3. 创建插件

    1. 新建插件

    2. 新建工具

    3. 安装依赖

    4. 编写代码

    5. 定义参数

    6. 测试代码

  4. 发布插件

创建Token

进入token申请页面:https://www.coze.cn/open/api,点击“添加新令牌”,按照时间情况填写token信息

图片

修改Bot配置

编辑需要改造的Bot,进入Bot发布页面,授权,勾选“Bot as API”,然后点击右上角的“发布”

图片

创建插件

新建插件

填写插件信息

图片

新建工具

填写工具信息

图片

安装依赖

Coze Bot 提供了rest api接口,通过python的requests库发起请求,需要安装requests库

图片

编写代码

在代码框内实现插件的核心逻辑

图片

定义参数

定义输入输出参数,与代码定义的变量保持一致

图片

测试代码

图片

发布插件

代码测试完成后,点击右上角的“发布”按钮,发布插件,整个流程完成、

上架插件

选择要上架的插件,填写相关信息,按照流程进行插件上架,之前演示过,这里不再演示

图片

总结

本文通过案例演示的方式,介绍了如何将扣子Coze平台创建的Bot改造成插件并发布到插件商店供第三方使用。如果看完还没学会的话,可以在文章下方评论或私信我。学会了的话,欢迎转发分享给你的朋友们。


我是无界生长,如果你觉得我分享的内容对你有帮助,麻烦点个关注,带你一起玩转AI!

AI学习资料在微信公众号:无界生长,个人微信:wjsz2070



在这里插入图片描述

### 如何通过 Python 调用扣子智能体 API 为了调用扣子智能体的 API,可以按照以下方法操作: #### 使用 `requests` 库发送 HTTP 请求 可以通过 Python 的标准库 `requests` 来向扣子智能体 API 发送请求并接收返回数据。这通常涉及设置必要的认证信息(如 API 密钥)、指定目标 URL 和传递所需的参数。 下面是一个简单的例子展示如何使用 `requests` 向扣子智能体 API 提交 GET 或 POST 请求: ```python import requests url = "https://api.kouzi.com/v1/conversation/start" # 替换为目标API的实际URL headers = { "Authorization": "Bearer YOUR_API_KEY", # 设置授权头 "Content-Type": "application/json" } payload = { "bot_id": "YOUR_BOT_ID", "user_id": "YOUR_USER_ID", "conversation_id": "OPTIONAL_CONVERSATION_ID", "message": "Hello, Kouzi!" } response = requests.post(url, json=payload, headers=headers) if response.status_code == 200: data = response.json() print(data) else: print(f"Error: {response.status_code}, Message: {response.text}") ``` 此代码片段展示了如何构建一个 POST 请求,并附带 JSON 数据作为负载[^1]。 --- #### 利用 CozePy 库简化开发流程 如果希望减少手动编写网络交互逻辑的工作量,则可以选择专门针对扣子智能体设计的第三方库——CozePy。该库封装了许多底层细节,使得开发者能够更专注于业务逻辑而非技术实现。 这里提供了一个基于 CozePy 的简单实例用于启动一次会话: ```python from cozepy import Client client = Client(api_key="YOUR_API_KEY") # 创建一个新的对话对象 conversation = client.create_conversation( bot_id="YOUR_BOT_ID", user_id="YOUR_USER_ID" ) # 获取初始响应消息 initial_message = conversation.send_message("你好!") print(initial_message.content) ``` 上述脚本利用了 CozePy 自动处理身份验证的过程以及序列化/反序列化的机制,从而让整个过程更加直观易懂[^2]。 --- #### 高级场景下的 LangChain 整合方案 对于某些复杂的应用场合来说,可能还需要引入额外的功能支持,比如流式传输实时更新的消息内容或者集成到更大的工作流框架当中去。此时就可以考虑采用像 **LangChain** 这样的高级工具集来进行扩展配置。 下面是有关于创建聊天模型的一个具体示范程序: ```python from langchain_community.chat_models import ChatCoze from langchain_core.messages import HumanMessage chat_model = ChatCoze( coze_api_base="YOUR_API_BASE", coze_api_key="YOUR_API_KEY", bot_id="YOUR_BOT_ID", user="YOUR_USER_ID", conversation_id="YOUR_CONVERSATION_ID", streaming=True, ) human_input = HumanMessage(content="请问今天的天气怎么样?") ai_response = chat_model([human_input]) for chunk in ai_response: print(chunk.content, end="", flush=True) ``` 这段代码不仅实现了基础通信功能,还加入了对动态反馈的支持特性[^3]。 --- ### 总结 以上分别介绍了三种不同层次的方法来完成与扣子智能体 API 的对接任务。无论是直接依赖原生 HTTP 协议还是借助专用 SDK 工具包亦或是进一步探索现代化 AI 平台所提供的可能性,都可以找到适合自己项目需求的最佳实践方式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值