统计学习方法——支持向量机(五)

支持向量机(五)

下面我们来看一下支持向量机的实现。

数据

我们通过程序来简单生成一些数据:

# 生成线性不可分数据点
def gen_data():
    mean1 = [-1, 2]
    mean2 = [1, -1]
    mean3 = [4, -4]
    mean4 = [-4, 4]
    cov = [[1.1, 0.8], [0.8, 1.1]]
    x1 = np.random.multivariate_normal(mean1, cov, 50)
    x1 = np.vstack((x1, np.random.multivariate_normal(mean3, cov, 50)))
    y1 = np.ones(len(x1))
    x2 = np.random.multivariate_normal(mean2, cov, 50)
    x2 = np.vstack((x2, np.random.multivariate_normal(mean4, cov, 50)))
    y2 = np.ones(len(x2)) * -1
    return x1, y1, x2, y2

实现

定义不同的核函数
  • 线性核函数
# 线性核函数
def linear_kernel(x, y):
    return np.dot(x, y)
  • 高斯核函数
def gaussian_kernel(x1, x2, sig=5):
    return np.exp(-np.linalg.norm(x1 - x2) ** 2 / (2 * (sig ** 2)))
  • 多项式核函数
# 多项式核函数
def polynomial_kernel(x, y, p=6):
    return (1 + np.dot(x, y)) ** p
定义SVM类
class SVM(object):
    def __init__(self, kernel, c=None):
        self.kernel = kernel
        self.c = c  # soft margin
        self.a = 0  # 拉格朗日乘数
        self.sv = 0  # 支撑向量
        self.sv_y = 0  # 支持向量的标签
        self.b = 0  # 截距
        if c is not None:
            self.c = float(self.c)

    def fit(self, x, y):
        n_samples, n_features = x.shape
        # 计算高斯核矩阵(xi*xj)
        K = np.zeros([n_samples, n_samples])
        for i in range(n_samples):
            for j in range(n_samples):
                K[i, j] = self.kernel(x[i], x[j])
        # 计算出svm对偶问题中,二次规划所需要的系数
        P = matrix(np.outer(y, y) * K)
        q = matrix(np.ones(n_samples) * -1)
        A = matrix(y, (1, n_samples))
        b = matrix(0.0)
        if self.c is None:
            G = matrix(np.diag(np.ones(n_samples) * -1))
            h = matrix(np.zeros(n_samples))
        else:
            tmp1 = np.diag(np.ones(n_samples) * -1)
            tmp2 = np.identity(n_samples)
            G = matrix(np.vstack((tmp1, tmp2)))
            tmp1 = np.zeros(n_samples)
            tmp2 = np.ones(n_samples) * self.c
            h = matrix(np.hstack((tmp1, tmp2)))
        # 将数据扔进解二次规划的程序中
        solution = solvers.qp(P, q, G, h, A, b)   #凸优化
        a = np.ravel(solution['x'])
        sv = a > 1e-7  # 找出拉格朗日乘数中不为零的地方
        index = np.arange(n_samples)[sv]
        self.a = a[sv]
        self.sv = x[sv]
        self.sv_y = y[sv]
        print("%s support vector out of %s points" % (len(self.a), len(x)))

        # 计算截距b
        for i in range(len(self.a)):
            self.b += self.sv_y[i]
            self.b -= np.sum(self.a * self.sv_y * K[index[i], sv])
        self.b /= len(self.a)

    # 投影到高维空间计算出分类值
    def project(self, x):
        y_predict = np.zeros(len(x))
        for i in range(len(x)):
            s = 0
            for a, sv_y, sv in zip(self.a, self.sv_y, self.sv):
                s += a * sv_y * self.kernel(x[i], sv)
            y_predict[i] = s
        return y_predict + self.b

其中Cvxopt.solvers.qp(P,q,G,h,A,b)为凸优化,形式如下:
形式

检验与结果

if __name__ == "__main__":
    x1, y1, x2, y2 = gen_data()
    x = np.vstack((x1, x2))
    y = np.append(y1, y2)
    svm = SVM(kernel=gaussian_kernel)
    svm.fit(x, y)
    print(plot_contour(x1, x2, svm))

结果如下所示:


 pcost       dcost       gap    pres   dres

0: -6.8584e+01 -1.8332e+02 6e+02 2e+01 2e+00
1: -1.1673e+02 -2.3569e+02 2e+02 9e+00 8e-01
2: -1.7881e+02 -3.0238e+02 3e+02 8e+00 7e-01
3: -2.6845e+02 -3.9948e+02 3e+02 7e+00 6e-01
4: -4.5629e+02 -5.5115e+02 2e+02 4e+00 3e-01
5: -4.7054e+02 -5.4090e+02 1e+02 1e+00 1e-01
6: -4.9443e+02 -5.0070e+02 1e+01 1e-01 1e-02
7: -4.9575e+02 -4.9583e+02 1e-01 1e-03 1e-04
8: -4.9577e+02 -4.9577e+02 1e-03 1e-05 1e-06
9: -4.9577e+02 -4.9577e+02 1e-05 1e-07 1e-08
10: -4.9577e+02 -4.9577e+02 1e-07 1e-09 1e-10
Optimal solution found.
9 support vector out of 200 points
结果


详细代码

https://github.com/canshang/-/blob/master/SVM.ipynb

参考文献

《统计学习方法》
https://blog.csdn.net/pengxuan3507/article/details/80473903

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值