说在开头:关于第六届索尔维会议(1)
1930年,第六届的索尔维会议要召开了,一大帮子物理学家又在深秋时节聚到了布鲁塞尔;玻尔来到会场时心中踹踹不安,看爱因斯坦似笑非笑的表情,吃不准他这三年练成了什么新招;不过玻尔倒也不用太过担心,量子论的兴起是板上钉钉的事情,现在整个体系已经站稳脚跟,枝繁叶茂了;而且他当年的弟子们:海森堡、泡利等,如今也都是能独当一面的大宗师了,玻尔自信吃不了大亏。
爱因斯坦凭着与玻尔交手的经验知道,在细节问题上是争不出个所以然的,量子论就像是神话中的九头蛇怪海德拉,砍掉一个头就会长出来一个,必须瞄准最关键的那颗头才行。这颗头就是其精髓:测不准原理。会议刚开始不就,爱因斯坦就站起来发言了:
诸位请上前看一看这个装置,爱因斯坦画了一个方盒子,在里面有一个小闸门,由一个机械钟控制,只要设定好时间就能自动打开闸门,盒子里有辐射物质会发出光子。爱因斯坦向大家解释这个思想实验的原理:海森堡和玻尔他们提出的不确定性原理讲到,时间Δt和能量ΔE是不能同时测量准确的,测准了能量就测不准时间,反之测准了时间就测不准能量。想同时测准这两个值的确不方便,那我就分开测,比如现在闸门就是个很精确的机械钟控制,到时间就开门放出一个光子,那么Δt肯定是知道的;然后飞出来一个光子箱子质量就变轻了。那这个箱子轻了多少呢?我们当然有办法测量出来,那么就是说ΔE就可以通过E=mC²的公式计算出来;终于我们成功地把ΔE和Δt都测准了,也就是说,测不准原理是错的。
大家一听,有道理啊;所有人都回过头去看玻尔;嘿,轮到你拆招啦。玻尔对此毫无思想准备,他大吃一惊,面如死灰、呆若木鸡,一时想不出任何反击的办法。玻尔万万没想到,爱因斯坦憋了三年,给他发了这么一个大招。大伙一看,这事要麻烦啊,爱因斯坦不亏是物理学泰斗,一出手就是杀招。离开会场时,爱因斯坦的身影高大庄严,带着一丝嘲讽的笑容,静悄悄地走了出去;玻尔跟在后面一路小跑,他激动不已,词不达意地辩解说要是爱因斯坦的装置真的管用,物理学就完蛋了。(参考自:吴京平-无中生有的世界)
- 能量传输原理
开关电源中有三种重要的功率元件:
1. 电感器:每个周期内,电感电流在峰值和谷值之间波动;当上电完成后,在输入电压和负载电流稳定时,电感电流峰值和谷值保持不变;
2. 开关管(BUCK上管MOS管):与电感器相连,在每个周期内导通和关断;在导通阶段的其实时间由时钟控制,关断阶段的起始时间由误差放大器或反馈环路控制(具体在后续《反馈环路设计》章节分析);
3. 钳位二极管(BUCK下管MOS管):与电感器和开关管在公共节点相连(即:交换节点),当开关管导通时二极管截止,反之开关管截止时二极管导通。
——开关管和二极管的动作互补,一个导通一个关断,其目的是使电感电流在开关管和二极管之间交替流动,提供给电感器电流流通路径(否则电感电流会引起电压脉冲尖峰,损坏开关管或变压器)。
对于所有开关电源拓扑(BUCK,BOOST,BUCK-BOOST)如下图所示,我们分析开关电源的工作过程的能量传递过程:
1. 当开关导通时,电感器与输入电压源相连,能量通过输入电源流入开关电源拓扑;
——此时电感器两端必然有正向电压差,电源传输功率P =V *I,其电感器存储的能量增加(E = 1/2 * L * I²)表明电流在电感器和开关管中以一定的斜率线性上升。
2. 当二极管导通(开关管关断)时,电感器与输出负载相连,电感电流流过导通的二极管,从而建立了输出通路;
——开关电源拓扑将能量传输给负载,电感器两端存在负向电压差(与开关管导通时的电压差反向),电感能量随之下降(非强迫连续导通模式下),表明电流在电感器和二极管中以一定的斜率线性下降。
好,胖友们知道了开关电源拓扑的几个主要功率器件,以及在开关管导通和关断过程中的能量传递,在电感器设计中有一个关键问题是:什么是最优电感值L?上面我们其实已经给出了一个普遍的标准,即r = 0.4时(纹波电流为±20%)对应的电感值L。但更加重要的是:应该选择怎样的磁芯尺寸?磁芯尺寸决定了单位开关周期内电感器的能量处理大小,从而确定电感器、输出电容器以及输入电容器的选择,同时还能确定开关管和二极管的损耗,从而确定开关电源整体的效率、热耗、散热设计等等。
1. 如之前章节所述,开关频率几乎与电感器磁芯尺寸成反比:举个栗子:开关频率100KHz,输出功率50W,那么每个周期输出的能量εo为:50W/100K = 500uJ;但如果选择开关频率为1MHz,那么每个周期输出能量εo为50uJ,即原来1次传输的能量,现在分10次传输,从而达到相同时间内传输的能量一样;
2. 对所有拓扑来说,相同输出功率对电感器尺寸的要求都是一样的么?我们在前面的拓扑介绍中,已经有提到不同拓扑的相同输出功率,对应的电感器尺寸是不一样的;
1, 在开关导通阶段:能量从输入端流向电源拓扑,对于BOOST和BUCK-BOOST拓扑来说,所有输入的能量都存储在电感器中;但对于BUCK拓扑来说,仅有部分能量存储在电感器中,另外一部分能量通过电感器直接传输到输出电源(此阶段BUCK拓扑中电感器与输出串联);
2, 在二极管导通(开关关断)阶段:能量从电源拓扑流向输出电源,BUCK和BUCK-BOOST拓扑中,所有的能量来自电感器(此阶段与输入电源断开)预先储存的能量;但对于BOOST拓扑来说,仅有部分能量预先存储在电感器中,而另一部能量直接来自输入电压源(此阶段BOOST拓扑中电感器与输入串联);
3, 对于所有拓扑,在一个开关频率周期内,开关管导通和关断阶段的能量传输,都是可以被确切描述的,而且电感电流和能量在每个周期的初值和终值相同,那么电感达到稳态。
——对于BUCK和BOOST电源拓扑来说,都有部分能量直接从输入电源传输至输出电源,此时并未利用电感器的储能能力,而电感器尺寸也可以更小一点;而BUCK-BOOST电源拓扑所有能量都需先储存在电感器中,然后全部传输到输出端,这也意味着BUCK-BOOST电源拓扑的电感器尺寸会更大。
1,能量传输图
每个电源图谱可以划分成三个储能框图:输入电容器、电感器和输出电容器;在每个阶段(开关管导通/关断),我们可以计算各个节点的V和I,并将V和I相乘就能得到响应的能量,于是从任意给定的储能框图量测的能量差,可以计算出给定框图中有多少能量输入(储存)或输出(消耗)。在最后得到能量平衡表:比较开关管关断阶段和导通阶段的输入或输出能量大小。
接下来将对三种基本电源拓扑:BUCK,BOOST,BUCK-BOOST进行能量传输分析;栗子:
电源功率:50W,开关频率:1MHz;那么每个开关周期传输能量εo = 50W/1M = 50uJ。同时我们假设电源转换效率为100%(即不计算电源拓扑的损耗),这样能更加清晰的理解拓扑中能量传输的过程。
1.1 BUCK能量传输图
举个栗子:BUCK电源Vin = 12V,Vo = 5V,Io = 10A;
由于BUCK拓扑直流传递函数D = Vo/Vin,那么占空比D = 5/12 = 0.417;那么输入电流Iin = 4.17A。
1. 开关管导通阶段,能量传输过程如下图所示;
——我们首先需要明确的是:对于开关电源拓扑来说,输入电源Vin是稳定电流4.17A输入到电源拓扑,如同输出电源Vo是稳定电流10A输出给负载,中间由于开关导致的波动,需要输入/输出电容器来平衡(提供能量)。
1, 输入电源Vin输出能量:Pin = Vin*Iin*Ton = 20.85uJ,开关管输出的能量为:Psw = Vsw*Isw*Ton = 12*10*0.417 = 50uJ,可得输入电容器在开关导通阶段流出的能量:ε = 50uJ – 20.85uJ = 29.15uJ;
——对于电感器和输出来说,它唯一的能量来源于开关管导通阶段的Vin,这部分能量从开关管流出;而开关管断开时,从电感器储存的能量中来,这部分能量是在开关管导通阶段储存的。
2, 电感器输出的能量:PL = VL*Io*Ton = 5*10*0.417 = 20.85uJ,可得电感器在开关导通阶段流入的能量:ε = 50uJ – 20.85uJ = 29.15uJ;
3, 输出电源流出的能量:Po = Vo*Io*Ton = 5*10*0.417 = 20.85uJ,与电感器流出能量相同,所以输出电容器整体没有能量流入或流出。
——BUCK拓扑电感器与输出负载串联,所以电感器电流IL与输出Io相同(平均电流),流经输出电容器的只有纹波电流,没有发生能量的储存和释放。
2. 开关管关断阶段,能量传输过程如下图所示;
1, 输入电源Vin流出能量:Pin = Vin*Iin*Toff = 29.15uJ,在关断阶段开关管没有任何能量流出,可得输入电容器在开关导通阶段流入的能量:ε = 29.15uJ –0 = 29.15uJ;
——我们对照开关管导通阶段,可以看到输入电容器在开关导通阶段流出的能量,在开关关断阶段弥补回来了。
2, 电感器输出的能量:PL = VL*Io*Ton = 5*10*0.583 = 29.15uJ,可得电感器在开关管导通阶段流出的能量: ε = 29.15uJ - 0 = 29.15uJ;
——这部分能量是电感器在开关导通阶段所储存的能量,通过续流二极管释放出来。
3, 电源输出的能量:Po = Vo*Io*Ton = 5*10*0. 583 = 29.15uJ,与电感器流出能量相同,所以输出电容器整体没有能量流入或流出。
3. 对于BUCK拓扑来说,在一个开关周期内的能量传输图如下所示,我们可以看到输入电容器和电感器对能量进行了存储和释放操作,在整个周期内是平衡的;而输出电容器没有参与能量的传输。
——输出电容器没参与能量的传输过程,说明BUCK拓扑并不太关注输出电容器的储能功能,最重要的是提供BUCK电源纹波电流的回流,要求尽可能低ESR(如《基本开关电源拓扑》中分析)。
1.2 BOOST能量传输图
举第二个栗子:BOOST电源Vin = 3.3V,Vo = 5V,Io = 10A;
由于BUCK拓扑直流传递函数D = (Vo-Vin)/Vin,那么占空比D =(5-3.3)/5 = 0.34;那么输入电流Iin = 15.15A。
1. 开关管导通阶段,能量传输过程如下图所示;
——对于开关电源拓扑来说,输入电源Vin是稳定电流4.17A输入到电源拓扑,如同输出电源Vo是稳定电流10A输出给负载,中间由于开关导致的波动,需要输入/输出电容器来平衡(提供能量)。
1, 输入电源Vin输出能量:Pin = Vin*Iin*Ton = 17uJ,电感器输入的能量为:PL = VL*IL*Ton = 3.3*15.15*0.34 = 17uJ,可得输入电容器在开关导通阶段的能量:ε = 0uJ;
——BOOST电源拓扑的电源输入与电感串联,即输入电流Iin = 电感电流IL,所以输入电容器并不参与能量传输。
2, 二极管输出的能量:Pd = Vd*Io*Ton = 5*0*0.34 = 0uJ,可得电感器在开关管导通阶段流入的能量: ε =17uJ – 0uJ = 17uJ;
——此时二极管处于反偏,所以没有电流流过二极管。
3, 输出电源流出的能量:Po = Vo*Io*Ton = 5*10*0.34 = 17uJ,这部分能量从输出电容器流出:Pc = 17uJ – 0 = 17uJ。
——输出电容提供了能量传输的过程,因为其接在二极管后面。
2. 开关管关断阶段,能量传输过程如下图所示;
1, 输入电源Vin流出能量:Pin = Vin*Iin*Toff = 33uJ,同理电感器输入的能量为:PL = VL*IL*Toff = 3.3*15.15*0.66 = 33uJ,所以输入电容器在开关管断开阶段能量:ε = 0uJ;
2, 二极管输出的能量Pd = Vd*Io*Toff = 5*15.15*0.66 = 50uJ,可得电感器在开关管关断阶段流出的能量ε = 50uJ - 33uJ = 17uJ;
——开关断开阶段流入电感器的能量要小于流出的能量,说明电感器要将开关管导通储存的能量释放出来。
3, 电源输出的能量:Po = Vo*Io*Ton = 5*10*0. 66 = 33uJ,与电感器流出能量不同,所以输出电容器流入能量:Pc = 50uJ - 33uJ = 17uJ。
3. 对于BOOST拓扑来说,在一个开关周期内的能量传输图如下所示,我们可以看到输出电容器和电感器对能量进行了存储和释放操作,在整个周期内是平衡的;而输入电容器没有参与能量的传输。
1.3 BUCK-BOOST能量传输图
举第三个栗子:BUCK-BOOST电源Vin = 3.3V,Vo = 5V,Io = 10A;
由于BUCK拓扑直流传递函数D = Vo/(Vo+Vin),那么占空比D = 5/(5+3.3) = 0.6;那么输入电流Iin = 15A。
1. 开关管导通阶段,能量传输过程如下图所示;
——对于开关电源拓扑来说,输入电源Vin是稳定电流15A输入到电源拓扑,如同输出电源Vo是稳定电流10A输出给负载,中间由于开关导致的波动,需要输入/输出电容器来平衡(提供能量)。
1, 输入电源Vin输出能量:Pin = Vin*Iin*Ton = 30uJ,开关管输入的能量为:Psw = Vsw*Isw*Ton = 3.3*25*0.6 = 50uJ,可得输入电容器在开关导通阶段的能量:ε = 50uJ - 30uJ = 20uJ;
——电源输入与开关管串联,当开关管导通时流入开关管/电感器的能量是开关周期内所有的能量50uJ,开关管关断时输入与电源拓扑断开。
2, 二极管输出的能量:Pd = Vd*Io*Ton = 5*0*0.34 = 0uJ,可得电感器在开关管导通阶段流入的能量:ε =50uJ – 0uJ = 50uJ;
——此时二极管处于反偏,所以没有电流流过二极管。
3, 输出电源流出的能量:Po = Vo*Io*Ton = 5*10*0.6 = 30uJ,这部分能量从输出电容器流出:Pc = 30uJ – 0 = 30uJ。
——输出电容提供了能量传输的过程,因为其接在二极管后面。
2. 开关管关断阶段,能量传输过程如下图所示;
1, 输入电源Vin流出能量:Pin = Vin*Iin*Toff = 20uJ,而开关管断开没有电流流入电源拓扑,所以输入电容器在开关管断开阶段能量:ε = 20uJ – 0 = 20uJ;
2, 二极管输出的能量:Pd = Vd*Io*Toff = 5*25*0.4 = 50uJ,可得电感器在开关管关断阶段流出的能量: ε = 50uJ - 0uJ = 50uJ;
——开关断开阶段没有能量流入电感器,而负载所有的能量都来自电感器,说明电感器将开关管导通储存的能量释放出来。
3, 电源输出的能量:Po = Vo*Io*Ton = 5*10*0. 4 = 20uJ,与电感器流出能量不同,所以输出电容器流入能量:Pc = 50uJ - 20uJ = 30uJ。
3. 对于BUCK-BOOST拓扑来说,在一个开关周期内的能量传输图如下所示,我们可以看到输入和输出电容器和电感器对能量进行了存储和释放操作,在整个周期内是平衡的。
1.4 拓扑能量传输结论
我们总结一下三种基本拓扑能量传递,如之前所说其它拓扑都是基于三种基本拓扑扩展或演化而来,所以它们的能量传输总结适用于所有电源拓扑。
1. BUCK-BOOST 电源拓扑(包括所有反激式电源拓扑)的电感器(变压器)必须处理所有输入能量;而BUCK(包括所有正激式电源拓扑)和BOOST电源拓扑的电感器只需要处理部分的能量;
——需要注意的是:电感器能量包处理大小并不是电感器最大能量储存大小,BUCK和BOOST电源拓扑有一部分能量(直流部分)经过电感器直接到输出端,这部分能量并未经电感器转换,但是其电流流经了电感器,会叠加在电感器储能的能量中。
2. 如下图所示,电感器能量的数学公式,最后得到电感器能量包大小:Δε = 伏秒积*IL;对于给定拓扑,伏秒积与开关频率f成反比,所以能量包Δε的大小与开关频率f成反比,即所需电感器的峰值能量处理能力也与开关频率f成反比;
——注意:不同拓扑在相同开关频率f下的伏秒积是不同的,通过伏秒积公式可以计算得到同样的电感器能量处理值的大小,如下图所示。
3. 在所有拓扑中,低输入电压对应大占空比,高输入电压对应小占空比;对于BUCK电源拓扑来说,如上图所示,高输入电压对应的1-D最大,那么 Δε = (Po/f)*(1-D)最大,与之前所说BUCK电源拓扑最恶劣电压输入情况相符合;
4. 对于BOOST电源拓扑,当输入电压最低时,D最大,Δε = (Po/f)*D最大,与之前论述相符;
5. 对于BUCK-BOOST电源拓扑,在之前分析要按输入电压最小Vinmin进行设计,但电感器能量处理能力Δε = Po/f,其与输入电压无关,但没有考虑到电感器峰值储能的要求,下一节详细分析。
2,电感器峰值储能
在对电感器储能计算上,我们只是考虑了电感器在输入/输出阶段整体储能的大小,而忽略了电流波形的峰值,这意味着忽略了电流纹波率r。我们前面分析了,对于电感器来说其电流峰值代表了电感器储能的最大值,所以在正常工作中电感器不仅能在周期内储存一定的能量,还需要在任意阶段不出现饱和。
如下图所示,计算出Δε与εpeak之间的关系,得到最重要的方程:εpeak = (Δε/8)*[r*(2/r + 1)²],这个方程适用于所有拓扑,但是Δε跟不同的拓扑相关。所以对于r = 0.4来说,εpeak = (Δε/8)*(0.4*36) = 1.8*Δε,即电感器峰值能量要比能量变化值大80%。按照这个计算结论,如果BUCK-BOOST电源拓扑的电感能量变化量为50uJ,在r = 0.4时的峰值能量处理为:50*1.8 = 90uJ,其电感器能量在40uJ和90uJ之间连续变化。
那有一个问题是,峰值电感电流与平均电感电流有r/2倍的关系,是否可以减小r值来减小电感器能量的处理呢?(这跟上一章分析的结论完全相反),从直觉来说:这样可以降低电流峰值,即可以降低电感器峰值能量,从而减小电感器磁芯尺寸。
但这是完全错误的,如上一章分析:通过增加r值来减小电感值,才能得到减小电感器尺寸的效果。从公式:εpeak = (Δε/8)*[r*(2/r + 1)²]中可得,当r非常小时,2/r + 1 ≈ 2/r,那么:εpeak = (Δε/8)*[r*(2/r + 1)²]= (Δε/2)/r,我们可以得到εpeak与r成线性反比,即r越小εpeak越大。如果将电流纹波率r转换成电感值L来描述,我们将得到更加直观的结果:磁芯尺寸随电感值L的减小而减小。
——在实际设计过程中,我们可以简单遵循:寻找更小的电感值来获得更小尺寸电感器的原则。
但是用减小电感值L方法来减小电感器尺寸的方法就没有任何后遗症么?从辩证唯物主义的角度来看,显然是不对的。电感值L的减小,会增大电感器纹波电流ΔI:
1. 首先,会增加电源拓扑交换节点的最大电流,从而增加对开关管管/二极管的通流能力要求,以及响应的器件损耗会增大;
2. 其次,漏感导致的脉冲尖峰也会增大,导致开关管被击穿的风险更大。
写在最后
本章是基本电源拓扑电感器设计的补充,本来还有磁芯设计相关的内容,电感器原理章节我们已经有所涉及,有兴趣的同学可以回顾《电感器原理》;磁芯设计的内容(需要涉及磁通量、磁通密度,磁场强度等等磁场基本原理知识)比本章的数学推导还要复杂,我脑袋瓜子也是嗡嗡的,当然如果胖友们对磁芯设计的内容感兴趣,我可以再出一期,讲讲我的理解。
本章部分相关内容和图片参考自:Sanjaya Maniktala -《精通开关电源设计》。下一章《离线式开关电源变压器设计》。