如何利用Spark提高批量插入Solr的效率

本文介绍了如何使用Spark提高批量插入SolrCloud的效率,建议使用MapPartitions而不是Map来减少连接创建,并在Executor端初始化连接池,以保持长链接并控制插入频率,避免SolrCloud崩溃。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有时候我们会碰到这样的场景:利用Spark批量插入数据。因为Spark相比MR编程更方便,更容易上手。因此接下来讲讲利用Spark批量插入数据时候的注意点。假设批量往SolrCloud里面插入数据。

1:利用MapPartitions针对每个分区的数据进行遍历插入,而不是利用Map针对每条数据进行插入

原因:当进行插入的时候,需要获取和SolrCloud的连接,如果利用Map针对每条数据进行插入的话,则需要获取N条连接(N为数据的总数);如果利用MapPartitions进行插入的话,则只需要获取M条连接(M为分区的总数)

2:在Excutor端初始化1个链接池,每个Excutor端的链接从这个链接池获取。这样做的好处是:1)链接池保存着和SolrCloud的长链接,一旦打开,就不关闭,除非Excutor退出;2)链接池可以控制每个Excutor连接SolrCloud的链接数,防止Rdd分区过多的情况下,由于过高频繁的插入造成SolrCloud崩溃。

Java实例代码如下:

1)利用MapPartitions插入代码块:

//finalRdd为JavaRDD<SomeObjects>
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值