关于机器学习SVM中KKT条件的深入理解推导

本文深入探讨支持向量机SVM中KKT条件的意义,解释为何需要取上下界,并通过几何意义讨论不同α情况下KKT条件的满足情况。通过对违反KKT条件的分析,阐述如何在SMO算法中修正解以满足约束。
摘要由CSDN通过智能技术生成

关于机器学习SVM中KKT条件的深入理解推导

本文面向在寻找KKT条件相关推到文章的读者,且默认前面关于svm的松弛下的模型和smo算法推到都已经了解。如果没有或者需要温习,请参看支持向量机SVM与SMO算法的的详细推导过程,文章虽然是本科时期所写比较粗糙,但在本文发表前已经重做修改(虽然界面比较丑),但耐心一定能看懂。若想要看视频的推导,也可以看我发现的宝藏up主大海老师,翻看里面的机器学习专栏。

目前为止的已知

目前我们已经推导出了未松弛与松弛的拉格朗日算法的模型,并且根据递推关系得出了α2的迭代关系式如下
在这里插入图片描述
而smo算法是一种启发式的算法,它在所有的α中选择两个进行smo算法的迭代,直到终止条件满足。
对于两个α的递推迭代,我们有如下的基础模型[1],我们记作图1
在这里插入图片描述
其中min W(α1,α2)时目标函数,每个0=< αi <= C,C是惩罚因子(一般一开始就为固定的常数)
还有约束条件 a1y1 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

原创小白变怪兽

帮助原创小白成为怪兽吧!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值