零基础搞定Zotero+ DeepSeek联动,高效阅读、总结文献

本文分享一下怎么实现Zotero和Deepseek的联动,提高文献阅读和综述效率,主要分为3部分:

    1、前置工作准备

  • Zotero下载安装

  • 插件下载安装(Translate for Zotero、Awesome GPT)

    2、Translate for Zotero插件配置

  • 插件参数配置

  • 插件使用简介

    3、Awesome GPT插件配置

  • 插件参数配置

  • 插件使用简介


1、前置工作准备

由于本文默认是已经在使用Zotero管理文献,所以不会重点介绍Zotero的下载、安装和使用,会简单附上官方教程,请大家自行探索,有问题可以随时交流。

1)Zotero下载安装

  • 如果之前没有安装Zotero,首先要下载安装,官网:

    Zotero | Your personal research assistant

    https://www.zotero.org/download/

  • 官方使用教程:

    start [Zotero Documentation]

    https://www.zotero.org/support/

2)插件下载安装

  • 请下载对应Zotero版本的Translate for Zotero、Awesome GPT插件,如果不知道如何访问GitHub,点击下载后的下载链接请选择gitee。

  • Zotero中文社区有开源、安全、免费插件商店:

    Zotero 插件商店 | Zotero 中文社区

    https://zotero-chinese.com/plugins/

  • 插件安装教程:

    关于 Zotero 插件 | Zotero 中文社区

    https://zotero-chinese.com/user-guide/plugins/about-plugin

2、Translate for Zotero插件配置

可以选择配置Deepseek官网API,也可以配置硅基流动Deepseek API,我推荐硅基流动,因为响应快,且有免费的Token可以白嫖。

由于本插件主要的功能就是翻译本身,为了反应速度,选择配置的模型为V3(Chat),而非R1(Reasoner)。如果非要坚持使用R1,那就不要坚持,没有必要。

1)插件参数配置

按照图示步骤,进入编辑->设置->翻译插件配置界面:

图片

(1)在翻译服务中下拉选择ChatGPT

(2)将之前申请的API密钥复制进去,如果不知道如何申请,第三章节API密钥获取

(3)点击配置,进入配置界面 

图片

(4)按照下表的参数复制进去即可

硅基流动Deepseek API

Deepseek官网API

接口

https://api.siliconflow.cn/v1/chat/completions

https://api.deepseek.com/v1/chat/completions

模型

deepseek-ai/DeepSeek-V3

deepseek-chat

温度

1.3

1.3

Prompt

你是一个中英文学术论文翻译专家,将用户输入的中文翻译成英文,或将用户输入的英文翻译成中文。对于非中文内容,将提供中文翻译结果。用户可以向你发送需要翻译的内容,你回答相应的翻译结果,你可以调整语气和风格,并考虑到某些词语的文化内涵和地区差异。同时作为翻译家,需将原文翻译成具有信达雅标准的译文。"信" 即忠实于原文的内容与意图;"达" 意味着译文应通顺易懂,表达清晰;"雅" 则追求译文的文化审美和语言的优美。目标是创作出既忠于原作精神,又符合目标语言文化和读者审美的翻译。一些缩写比如方法名字、人名视情况可不进行翻译。同时翻译时需要注意上下文一些名词的翻译结果的一致性。需要翻译的内容为:${sourceText},请提供翻译结果并不做任何解释。

2)插件使用简介

选中文献后,就会进行自动翻译。

图片

更详细操作,请参考Translate for Zotero 插件官方使用教程:

https://zotero.yuque.com/staff-gkhviy/pdf-trans/gwn6ov

3、Awesome GPT插件配置

本插件主要用来协助进行文献阅读、综述等,需要推理能力,所以需要选择Deepseek-R1模型。

1)插件参数配置

按照图示步骤,进入编辑->设置->GPT插件配置界面:

图片

(1)配置general部分

  • Base API:右侧下拉选择对应的模型服务商,硅基流动选择siliconflow,Deepseek官方选择deepseek,Base API会自动填充;

  • API Key:复制对应的模型服务商的API密钥,如何获取上文也有传送门,不再赘述;

  • Model:右侧下拉选择对应模型服务商提供的模型,硅基流动选择deepseek-r1(siliconflow),Deepseek官方选择deepseek-r1,Model名称会自动填充;

(2)配置模型参数

  • Temperature:控制生成文本的随机性,影响输出结果的多样性。对于文献管理助手,建议设置为较低值,如0.5,以确保生成的摘要和信息准确可靠;

  • Max Tokens:单次回答最大Token数,具体设置多少取决于自己的需要,也可以默认;

  • Related Number:代表Ask PDF时发送给AI的段落数量,建议20,太大容易超过AI的字数上限;

  • Chat Number:处理对话时模型记住的对话轮数或历史信息的数量。可以根据自己的习惯设置,建议设置为5-10,确保模型能够考虑到更多的交互历史提供更连贯和个性化的服务;

(3)配置embedding部分

自定义嵌入(custom embeddings)是一种在Zotero的GPT插件中使用的高级功能,它允许用户通过特定的文本嵌入模型来提升文献管理助手的性能。这种模型能够将文本转换为数值向量,捕捉文本的深层语义信息,从而使得文献搜索、推荐和摘要生成更加精准和相关,更深入地理解文本内容,提供更高质量的服务,这对于处理专业或特定领域的文献尤其重要。→所以最好对Using custom embedding部分也进行配置。

目前DeepSeek仅支持对话能力,需要与其他模型结合,本文使用硅基流动部署的智谱清言嵌入模型提供向量能力。

  • Full API:最右侧下拉符号选择siliconflow即可

  • Key:将在硅基流动官网申请的API密钥复制进去

  • Model:最右侧下拉符号选择“BAAI/bge-m3(siliconflow)”

(4)测试连通性

点击Test,等待一会儿,就可以在上方输出框中看到返回“Normal,used xx.xxs”,就表示已经配置成功。

图片

2)GPT使用简介

点击窗口栏图标,打开插件,可以直接点击Literature Review,就会输出相应内容,也可以选中一段话去AskPDF,也可以AskPDF(Full text),还可以选择多篇文献同时对话,非常好用。

图片

该插件还有很多功能非常值得探索,请自行参考如下资料:

另外:

  • siliconflow和siliconflow pro提供的模型有什么区别?

siliconflow pro仅能使用充值金额,使用人相对较少,响应较快、使用流畅;siliconflow既可使用赠送余额,也可使用充值余额,使用的人较多。

 大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书 

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。



4.LLM面试题和面经合集


这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。



👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值