scipy包含致力于科学计算中常见问题的各个工具箱。它的不同子模块相应于不同的应用。像插值,积分,优化,图像处理,统计,特殊函数等等。
scipy 由一些特定功能的子模块组成:
模块 | 功能 |
---|---|
scipy.cluster | 矢量量化 / K-均值 |
scipy.constants | 物理和数学常数 |
scipy.fftpack | 傅里叶变换 |
scipy.integrate | 积分程序 |
scipy.interpolate | 插值 |
scipy.io | 数据输入输出 |
scipy.linalg | 线性代数程序 |
scipy.ndimage | n维图像包 |
scipy.odr | 正交距离回归 |
scipy.optimize | 优化 |
scipy.signal | 信号处理 |
scipy.sparse | 稀疏矩阵 |
scipy.spatial | 空间数据结构和算法 |
scipy.special | 任何特殊数学函数 |
scipy.stats | 统计 |
补充下md表格语法
| ------------- |默认左对齐
| ------------ :|右对齐
| :-----------: |居中
安装
conda install -n tensorflow scipy
conda install -n tensorflow matplotlib
实例
import sys
import numpy as np
import matplotlib.pyplot as plt
print(sys.version)
'''
3.5.3 |Continuum Analytics, Inc.| (default, May 15 2017, 10:43:23) [MSC v.1900 64 bit (AMD64)]
'''
print('文件输入/输出:scipy.io')
from scipy import io as spio
a = np.ones((3, 3))
spio.savemat('file.mat', {'a': a}) # savemat as a dictionary
data = spio.loadmat('file.mat', struct_as_record=True)
print(data['a'])
'''
[[ 1. 1. 1.]
[ 1. 1. 1.]
[ 1. 1. 1.]]
'''
print('读取图片')
'''
from scipy import misc
misc.imread('qiuqiu.jpg')
依赖与PIL包,PIL只能在2.6环境下跑,3.5环境冲突,imread搁置
'''
print('计算方阵的行列式')
from scipy import linalg
arr = np.array([[1, 2],[3, 4]])
print(linalg.det(arr))
'''
-2.0
二阶行列式算法
1 2
3 4
=1*4-3*2
'''
print('计算方阵的逆')
iarr = linalg.inv(arr)
print(iarr)
'''
一个n阶方阵A称为可逆的,或非奇异的,如果存在一个n阶方阵B,使得AB=BA=E
并称B是A的一个逆矩阵。不可逆的矩阵称为奇异矩阵。A的逆矩阵记作A-1。
'''
print('快速傅里叶变换')
'''
计算量小的显著的优点,使得FFT在信号处理技术领域获得了广泛应用,结合高速硬件就能实现对信号的实时处理。
例如,对语音信号的分析和合成,对通信系统中实现全数字化的时分制与频分制(TDM/FDM)的复用转换,在频域对信号滤波以及相关分析,
通过对雷达、声纳、振动信号的频谱分析以提高对目标的搜索和跟踪的分辨率等等,都要用到FFT。
可以说FFT的出现,对数字信号处理学科的发展起了重要的作用。
'''
from scipy import fftpack as fft
time_step=2
period = 5
time_vec = np.arange(0, 20, time_step)
sig=np.sin(2 * np.pi / period * time_vec) +0.5 * np.random.randn(time_vec.size)
# 过滤开始
sample_freq = fft.fftfreq(sig.size, d=time_step)
sig_fft = fft.fft(sig)
pidxs = np.where(sample_freq > 0)
freqs = sample_freq[pidxs]
power = np.abs(sig_fft)[pidxs]
freq = freqs[power.argmax()]
#np.allclose(freq, 1./period)
sig_fft[np.abs(sample_freq) > freq] = 0
main_sig = fft.ifft(sig_fft)
#plt.figure()
plt.plot(time_vec, sig)
plt.plot(time_vec, np.real(main_sig), linewidth=3)#np.real强制转换,否则报错ComplexWarning: Casting complex values to real discards the imaginary part
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.show()
'''
time_vec
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
sig
[0.17211885333331564, 0.84289268289876484, -1.4667942997074033, 0.43223913232468947, 0.57113766593861837, 0.73110889716989713, 0.27913981274609123, -1.3888892138941045, 1.0190839066907211, 0.016092873514701234]
sample_freq
[ 0. 0.05 0.1 0.15 0.2 -0.25 -0.2 -0.15 -0.1 -0.05]
pidxs
<class 'tuple'>: (array([1, 2, 3, 4], dtype=int64),)
freqs
[ 0.05 0.1 0.15 0.2 ]
power
[ 0.39549041 3.26876404 1.7504016 4.50417606]
freq
0.2
main_sig
[ 0.17799470 +0.00000000e+00j 0.83701684 -4.44089210e-17j
-1.46091846 +0.00000000e+00j 0.42636329 -2.33298689e-17j
0.57701351 +0.00000000e+00j 0.72523305 -4.29695792e-17j
0.28501566 +0.00000000e+00j -1.39476506 +1.14824723e-16j
1.02495975 +0.0000
'''